Inhibition of leucine-rich repeat kinase 2 is a genetically supported mechanism for the treatment of Parkinson's disease. We previously disclosed the discovery of an indazole series lead that demonstrated both safety and translational risks. The safety risks were hypothesized to be of unknown origin, so structural diversity in subsequent chemical matter was prioritized.
View Article and Find Full Text PDFInhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp-sp cross-coupling technologies.
View Article and Find Full Text PDFThe discovery of potent, kinome selective, brain penetrant LRRK2 inhibitors is the focus of extensive research seeking new, disease-modifying treatments for Parkinson's disease (PD). Herein, we describe the discovery and evolution of a picolinamide-derived lead series. Our initial optimization efforts aimed at improving the potency and CLK2 off-target selectivity of compound by modifying the heteroaryl C-H hinge and linker regions.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2020
The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.
View Article and Find Full Text PDFA series of 4, 4-disubstituted proline analogs were designed, synthesized, and tested for selective inhibition of blood coagulation factor XIa in search of new non-vitamin K antagonists based oral anticoagulants for potential prevention and treatment of thrombotic diseases. Starting from a potent thrombin (FIIa) inhibitor chemotype with FIIa IC = 1 nM and FXIa IC = 160 nM, medicinal chemistry iterations guided by molecular modeling and structure-based drug design led to steady improvement of FXIa potency while dialing down thrombin activity and improving selectivity. Through this exercise, a thousand-fold enhancement of selectivity over thrombin was achieved with some analogs carrying factor XIa inhibition potencies in the 10 nM range.
View Article and Find Full Text PDFThe ever-growing prevalence of type 2 diabetes in the world has necessitated an urgent need for multiple orally effective agents that can regulate glucose homeostasis with a concurrent reduction in body weight. G-Protein coupled receptor 119 (GPR119) is a GPCR target at which agonists have demonstrated glucose-dependent insulin secretion and shows beneficial effects on glycemic control. Herein, we describe our efforts leading to the identification of a potent, oral GPR-119 agonist, MK-8282, which shows improved glucose tolerance in multiple animal models and has excellent off-target profile.
View Article and Find Full Text PDFA new class of hepatitis C NS3/4A inhibitors was identified by introducing a novel spirocyclic proline-P2 surrogate onto the P2-P4 macrocyclic core of MK-5172 (grazoprevir). The potency profile of new analogues showed excellent pan-genotypic activity for most compounds. The potency evaluation included the most difficult genotype 3a (EC values ≤10 nM) and other key genotype 1b mutants.
View Article and Find Full Text PDFWe have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing.
View Article and Find Full Text PDFDiscovery of a series of azepine sulfonamides as potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is described. SAR studies at the 4-position of the azepane ring have resulted in the discovery of a very potent compound 30 which has an 11beta-HSD1 IC(50) of 3.0nM.
View Article and Find Full Text PDFAn alanine scan performed in the 1970s suggested that Phe(6) and Phe(11) are required for the binding of somatostatin (SRIF-14). Molecular modeling studies and replacement of Phe(6) and Phe(11) with a cystine bridge affording ligands with the retention of high biological activity, however, led to the alternate conclusion that Phe(6) and Phe(11) stabilize the bioactive conformation of SRIF-14. Subsequent studies revealed that Phe(11) shields Phe(6) in a "herringbone" arrangement.
View Article and Find Full Text PDFIt is demonstrated that phosphorylated forms of beta-nitro alcohols provide an excellent means of entry into beta-(phosphatoxy)alkyl radicals on exposure to tributyltin hydride and AIBN in benzene at reflux. These radicals then undergo heterolytic cleavage of the phosphate group to yield alkene radical cation/phosphate anion contact ion pairs which are trapped intramolecularly in a tandem polar/radical crossover sequence involving radical ionic chain reactions by allylic and propargylic amines. The substitution pattern of the alkene radical cation dictates the cyclization mode, and this may be engineered to form fused ring systems by an initial exo-mode nucleophilic cyclization or bridged bicyclic systems when the nucleophilic attack takes place in the endo-mode.
View Article and Find Full Text PDFBorane gas and 2-(perfluorooctyl)ethyl methyl sulfide form a solid comprised of an approximately 1:1 mixture (fluorous BMS) of sulfide and the corresponding sulfide-borane. Fluorous BMS permits hydroboration of alkenes in a dichloromethane/perfluorinated hydrocarbon mixture with subsequent recycling of the fluorous sulfide by fluorous extraction. The use of fluorous BMS in the asymmetric reduction of ketones catalyzed by a chiral oxaborolidine catalyst, and in the reduction of other functional groups, is also reported.
View Article and Find Full Text PDF[reaction: see text] It is demonstrated that alkene radical cations generated by the radical ionic fragmentation of beta-(phosphatoxy)alkyl radicals undergo efficient nucleophilic capture by amines in either the 6-exo or 6-endo modes, leading to six-membered nitrogen heterocycles. Suitable placement of an alkene enables the juxtaposition of a radical cyclization resulting in the formation of both the indolizidine and 1-azabicyclo[3.2.
View Article and Find Full Text PDF