Publications by authors named "Santhakumar V"

Proteolysis-targeting chimeras (PROTACs) have been explored for the degradation of drug targets for more than two decades. However, only a handful of E3 ligase substrate receptors have been efficiently used. Downregulation and mutation of these receptors would reduce the effectiveness of such PROTACs.

View Article and Find Full Text PDF

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether selective dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and enhances the risk for seizures has not been evaluated.

View Article and Find Full Text PDF

Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays.

View Article and Find Full Text PDF

Impaired inhibitory synapse development is suggested to drive neuronal hyperactivity in autism spectrum disorders (ASD) and epilepsy. We propose a novel mechanism by which astrocytes control the development of parvalbumin (PV)-specific inhibitory synapses in the hippocampus, implicating ephrin-B/EphB signaling. Here, we utilize genetic approaches to assess functional and structural connectivity between PV and pyramidal cells (PCs) through whole-cell patch-clamp electrophysiology, optogenetics, immunohistochemical analysis, and behaviors in male and female mice.

View Article and Find Full Text PDF

Unlabelled: The dentate gyrus is critical for spatial memory formation and shows task related activation of cellular ensembles considered as memory engrams. Semilunar granule cells (SGCs), a sparse dentate projection neuron subtype distinct from granule cells (GCs), were recently reported to be enriched among behaviorally activated neurons. However, the mechanisms governing SGC recruitment during memory formation and their role in engram refinement remains unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • DCAF12 is a protein that identifies specific degradation signals in other proteins to facilitate their breakdown via the ubiquitin proteasome system.
  • Research found that DCAF12 interacts with melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5), using advanced techniques to study these interactions.
  • The cryo-EM structure of the DDB1-DCAF12-MAGEA3 complex provided detailed insights into how DCAF12 recognizes and binds to these signals, aiding future drug development targeting this protein's domain.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a new chemical handle (PFI-E3H1) and a probe (PFI-7) targeting the Gid4 subunit of the human E3 ligase CTLH degradation complex.
  • Using a combination of screening and structure-based drug design, they found a strong ligand with a 500 nM binding affinity and improved it to under 100 nM.
  • These new chemical tools, along with a negative control, will help study the functions of this complex E3 ligase.
View Article and Find Full Text PDF

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested.

View Article and Find Full Text PDF

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether selective dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and enhances the risk for seizures has not been evaluated.

View Article and Find Full Text PDF

The transcription factor YAP-TEAD is the downstream effector of the Hippo pathway which controls cell proliferation, apoptosis, tissue repair, and organ growth. Dysregulation of the Hippo pathway has been correlated with carcinogenic processes. A co-crystal structure of TEAD with its endogenous ligand palmitic acid (PA) as well as with flufenamic acid (FA) has been disclosed.

View Article and Find Full Text PDF

Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies.

View Article and Find Full Text PDF

WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database.

View Article and Find Full Text PDF

Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined.

View Article and Find Full Text PDF

Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs.

View Article and Find Full Text PDF

Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs.

View Article and Find Full Text PDF

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice.

View Article and Find Full Text PDF

Acquired epilepsies, characterized by abnormal increase in hypersynchronous network activity, can be precipitated by various factors including brain injuries which cause neuronal loss and increases in network excitability. Electrical coupling between neurons, mediated by gap junctions, has been shown to enhance synchronous neuronal activity and promote excitotoxic neurodegeneration. Consequently, neuronal gap junctional coupling has been proposed to contribute to development of epilepsy.

View Article and Find Full Text PDF
Article Synopsis
  • Precision medicine is an evolving approach in healthcare that aims to enhance decision-making and health outcomes, particularly in managing diabetes, which poses serious health risks for millions globally.
  • The second international consensus report on precision diabetes medicine reviews current findings on prevention, diagnosis, treatment, and prognosis across different forms of diabetes, highlighting the potential for translating research into clinical practice.
  • The report also identifies knowledge gaps and sets out key milestones for better clinical implementation, emphasizing the need for standards addressing cost-effectiveness, health equity, and accessibility in treatment options.
View Article and Find Full Text PDF

Background: The variability in the effectiveness of type 2 diabetes (T2D) preventive interventions highlights the potential to identify the factors that determine treatment responses and those that would benefit the most from a given intervention. We conducted a systematic review to synthesize the evidence to support whether sociodemographic, clinical, behavioral, and molecular factors modify the efficacy of dietary or lifestyle interventions to prevent T2D.

Methods: We searched MEDLINE, Embase, and Cochrane databases for studies reporting on the effect of a lifestyle, dietary pattern, or dietary supplement interventions on the incidence of T2D and reporting the results stratified by any effect modifier.

View Article and Find Full Text PDF

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers.

View Article and Find Full Text PDF

E3 ubiquitin ligases are critical to the protein degradation pathway by catalyzing the final step in protein ubiquitination by mediating ubiquitin transfer from E2 enzymes to target proteins. Nedd4 is a HECT domain-containing E3 ubiquitin ligase with a wide range of protein targets, the dysregulation of which has been implicated in myriad pathologies, including cancer and Parkinson's disease. Towards the discovery of compounds disrupting the auto-ubiquitination activity of Nedd4, we developed and optimized a TR-FRET assay for high-throughput screening.

View Article and Find Full Text PDF

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations one week after concussive lateral fluid percussion injury (FPI) in mice.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) catalyze the methylation of the terminal nitrogen atoms of the guanidino group of arginine of protein substrates. The aberrant expression of these methyltransferases is linked to various diseases, making them promising therapeutic targets. Currently, PRMT inhibitors are at different stages of clinical development, which validated their significance as drug targets.

View Article and Find Full Text PDF

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery.

View Article and Find Full Text PDF

Target 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins.

View Article and Find Full Text PDF