Publications by authors named "Santha M"

Article Synopsis
  • This study explores how hypertriglyceridemia, linked to atherosclerosis, affects the function and structure of the blood-brain barrier (BBB) using a specific mouse model (APOB-100 transgenic).
  • Researchers examined the role of interleukin (IL)-6, a pro-inflammatory cytokine, in impairing BBB characteristics and whether IL-10, an anti-inflammatory cytokine, could counteract these effects.
  • Results showed that IL-6 increased permeability and decreased the activity of critical BBB proteins in the mice, while IL-10 helped mitigate these changes, indicating a potential therapeutic target for BBB dysfunction.
View Article and Find Full Text PDF

Neurogenesis plays a crucial role in cognitive processes. During aging and in Alzheimer's disease (AD), altered neurogenesis and neuroinflammation are evident both in C57BL/6J, APP/PS1 (Tg) mice and humans. AD pathology may slow down upon drug treatment, for example, in a previous study of our group P33, a putative neuroprotective agent was found to exert advantageous effects on the elevated levels of APP, Aβ, and neuroinflammation.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET).

Methods: High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT).

View Article and Find Full Text PDF

Animal experiments have served to improve our knowledge on diseases and treatment approaches since ancient times. Today, animal experiments are widely used in medical, biomedical and veterinary research, and are essential means of drug development and preclinical testing, including toxicology and safety studies. Recently, great efforts have been made to replace animal experiments with in vitro organoid culture methods and in silico predictions, in agreement with the 3R strategy to "reduce, refine and replace" animals in experimental testing, as outlined by the European Commission.

View Article and Find Full Text PDF

Increased blood-brain barrier (BBB) permeability and extensive neuronal changes have been described earlier in both healthy and pathological aging like apolipoprotein B-100 (APOB-100) and amyloid precursor protein (APP)-presenilin-1 (PSEN1) transgenic mouse models. APOB-100 hypertriglyceridemic model is a useful tool to study the link between cerebrovascular pathology and neurodegeneration, while APP-PSEN1 humanized mouse is a model of Alzheimer's disease. The aim of the current study was to characterize the inflammatory changes in the brain with healthy aging and in neurodegeneration.

View Article and Find Full Text PDF

Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors.

View Article and Find Full Text PDF

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise.

View Article and Find Full Text PDF

Background: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury.

View Article and Find Full Text PDF

Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases.

View Article and Find Full Text PDF

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia.

View Article and Find Full Text PDF

Regulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) leads to the formation of fragments, among which the intracellular domain of APP (AICD) was also identified to be a causative of early pathological events. AICD-counteracting proteins, such as Fe65, may serve as alternative therapeutic targets of Alzheimer's disease (AD). The detection of elevated levels of Fe65 in the brains of both human patients and APP transgenic mice may further strengthen the hypothesis that influencing the interaction between Fe65 and APP may have a beneficial effect on the course of AD.

View Article and Find Full Text PDF

Hypertriglyceridemia is not only a serious risk factor in the development of cardiovascular diseases, but it is linked to neurodegeneration, too. Previously, we generated transgenic mice overexpressing the human APOB-100 protein, a mouse model of human atherosclerosis. In this model we observed high plasma levels of triglycerides, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, cognitive impairment, increased neural apoptosis and neurodegeneration.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy).

View Article and Find Full Text PDF

Adiponectin and leptin are implicated in the initiation and pathomechanism of Alzheimer's disease (AD). The serum concentrations of these adipokines has been extensively studied in AD, however little is known about their receptors in this disease. We developed a novel approach to examine whether the receptors of adiponectin (AdipoR1 and -R2) and/or leptin (LepR) can contribute to AD pathomechanism.

View Article and Find Full Text PDF

Heat shock proteins (Hsps) have chaperone activity and play a pivotal role in the homeostasis of proteins by preventing misfolding, by clearing aggregated and damaged proteins from cells, and by maintaining proteins in an active state. Alzheimer's disease (AD) is thought to be caused by amyloid-β peptide that triggers tau hyperphosphorylation, which is neurotoxic. Although proteostasis capacity declines with age and facilitates the manifestation of neurodegenerative diseases such as AD, the upregulation of chaperones improves prognosis.

View Article and Find Full Text PDF

Processing of the amyloid precursor protein (APP) and amyloid beta (Aβ) has been for decades in the center of Alzheimer's disease (AD) research. Beside many other variables, lipids, especially cholesterol and its derivatives, are discussed to contribute to AD pathogenesis. Several studies show that cholesterol affects APP metabolism.

View Article and Find Full Text PDF

Background: The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells.

View Article and Find Full Text PDF

Nonlocality enables two parties to win specific games with probabilities strictly higher than allowed by any classical theory. Nevertheless, all known such examples consider games where the two parties have a common interest, since they jointly win or lose the game. The main question we ask here is whether the nonlocal feature of quantum mechanics can offer an advantage in a scenario where the two parties have conflicting interests.

View Article and Find Full Text PDF

What Is Known: There is an increasing number of studies demonstrating the direct effect of the cannabinoid receptor 1 (CB1) antagonist/inverse agonist rimonabant on the opioid system. The kappa opioid receptors (KORs) are well known to mediate depression- and anxiety-like behavior. Clinical studies on chronic rimonabant administration have revealed that rimonabant leads to a very similar pathophysiology, suggesting a potential impact of rimonabant on KORs.

View Article and Find Full Text PDF

Clinical diagnosis of Alzheimer's disease (AD) relying on symptomatic features has a low specificity, emphasizing the importance of the pragmatic use of neurochemical biomarkers. The most advanced and reliable markers are amyloid-β (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) with relatively high levels of sensitivity, specificity, and diagnostic accuracy. Recent advances within the field of proteomics offer the potential to search for novel biomarkers in CSF by using modern methods, such as microarrays.

View Article and Find Full Text PDF

Emerging evidence demonstrates a close interplay between disturbances in mitochondrial function and ER homeostasis in the development of the metabolic syndrome. The present investigation sought to advance our understanding of the communication between mitochondrial dysfunction and ER stress in the onset of hepatic steatosis in male rodents with defective peroxisome proliferator-activated receptor-α (PPARα) signaling. Genetic depletion of PPARα or perturbation of PPARα signaling by high-fructose diet compromised the functional activity of metabolic enzymes involved in mitochondrial fatty acid β-oxidation and induced hepatic mitochondrial stress in rats and mice.

View Article and Find Full Text PDF

Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function.

View Article and Find Full Text PDF

During their lifetime, people are commonly exposed to several vascular risk factors that may affect brain ageing and cognitive function. In the last few years, increasing evidence suggests that pathological plasma lipid profiles contribute to the pathogenesis of late-onset Alzheimer's disease. Importantly, hypercholesterolemia, especially elevated low-density lipoprotein cholesterol values, that is, increased apolipoprotein B-100 (ApoB-100) levels, represents an independent risk factor.

View Article and Find Full Text PDF

Hsp27 belongs to the small heat shock protein family, which are ATP-independent chaperones. The most important function of Hsp27 is based on its ability to bind non-native proteins and inhibit the aggregation of incorrectly folded proteins maintaining them in a refolding-competent state. Additionally, it has anti-apoptotic and antioxidant activities.

View Article and Find Full Text PDF