Sea urchin eggs are covered with layers of extracellular matrix, namely, the vitelline layer (VL) and jelly coat (JC). It has been shown that sea urchin eggs' JC components serve as chemoattractants or ligands for the receptor on the fertilizing sperm to promote the acrosome reaction. Moreover, the egg's VL provides receptors for conspecific sperm to bind, and, to date, at least two sperm receptors have been identified on the surface of sea urchin eggs.
View Article and Find Full Text PDFThe actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca release.
View Article and Find Full Text PDFImmature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD).
View Article and Find Full Text PDFBackground: The use of dressings is an essential component of the standard of care for diabetic foot ulcers (DFUs); however, despite the wide variety of dressings available, there is a lack of evidence from head-to-head randomized controlled trials. We evaluated the efficacy and safety of extract and polyhexanide (Fitostimoline hydrogel/Fitostimoline Plus gauze) versus saline gauze dressings in patients with DFUs.
Methods: This study involved a monocentric, two-arm, open-label, controlled trial in patients with DFUs (Grades I or II, Stage A or C, based on the Texas classification) randomized to 12 weeks of dressing with Fitostimoline hydrogel/Fitostimoline Plus gauze or saline gauze.
In starfish, the addition of the hormone 1-methyladenine (1-MA) to immature oocytes (germinal vesicle, GV-stage) arrested at the prophase of the first meiotic division induces meiosis resumption (maturation), which makes the mature eggs able to respond to the sperm with a normal fertilization response. The optimal fertilizability achieved during the maturation process results from the exquisite structural reorganization of the actin cytoskeleton in the cortex and cytoplasm induced by the maturing hormone. In this report, we have investigated the influence of acidic and alkaline seawater on the structure of the cortical F-actin network of immature oocytes of the starfish () and its dynamic changes upon insemination.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2022
In sea urchins, the sequence of the cellular and molecular events characterizing the fertilization process has been intensively studied. We have learned that to activate the egg, the fertilizing sperm must undergo morphological modifications (the acrosome reaction, AR) upon reaching the outer gelatinous layer enveloping the egg (egg jelly), which triggers the polymerization of F-actin on the sperm head to form the acrosomal process. The AR exposes bindin, an adhesive sperm protein essential for the species-specific interaction with the cognate receptor on the egg vitelline layer.
View Article and Find Full Text PDFRepeated polygonal patterns are pervasive in natural forms and structures. These patterns provide inherent structural stability while optimizing strength-per-weight and minimizing construction costs. In echinoids (sea urchins), a visible regularity can be found in the endoskeleton, consisting of a lightweight and resistant micro-trabecular meshwork (stereom).
View Article and Find Full Text PDFIn sea urchin, the immediate contact of the acrosome-reacted sperm with the egg surface triggers a series of structural and ionic changes in the egg cortex. Within one minute after sperm fuses with the egg plasma membrane, the cell membrane potential changes with the concurrent increases in intracellular Ca levels. The consequent exocytosis of the cortical granules induces separation of the vitelline layer from the egg plasma membrane.
View Article and Find Full Text PDFThe vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL.
View Article and Find Full Text PDFThe sea urchin Arbacia lixula coexist with Paracentrotus lividus in the Mediterranean, but the two sea urchin species are quite different from each other. Concerning the female gamete, A. lixula eggs are much darker than those of P.
View Article and Find Full Text PDFAbstractFertilization and early development are usually the most vulnerable stages in the life of marine animals, and the biological processes during this period are highly sensitive to the environment. In nature, sea urchin gametes are shed in seawater, where they undergo external fertilization and embryonic development. In a laboratory, it is possible to follow the exact morphological and biochemical changes taking place in the fertilized eggs and the developing embryos.
View Article and Find Full Text PDFAbstract: Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature.
View Article and Find Full Text PDFDismissed industrial plants with chronic environmental contamination globally affect all levels of biological organization in concert with other natural and anthropogenic perturbations. Assessing the impact of such perturbations and finding effective ways to mitigate them have clear ecological and societal implications. Through indoor manipulative experiments, we assessed here the effects of the temporal regime of reworking of contaminated sediment from the Bagnoli-Coroglio brownfield (Tyrrhenian Sea, Italy) on the fertilization process in Paracentrotus lividus.
View Article and Find Full Text PDFWhile alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2019
During sea urchins fertilization, the activating spermatozoon triggers a series of physiological changes that transforms the quiescent egg into a dynamic zygote. It has been suggested that several of these egg activation events, e.g.
View Article and Find Full Text PDFIntegrity of oocytes is of pivotal interest in the medical and zootechnical practice of in vitro fertilization. With time, oocytes undergo deterioration in quality, and ageing oocytes often exhibit compromised competence in fertilization and the subsequent embryonic development. With ageing oocytes and eggs of starfish (Astropecten aranciacus), we addressed the issue by examining changes of the subcellular structure and their performance at fertilization.
View Article and Find Full Text PDFThe onset of fertilization in echinoderms is characterized by instantaneous increase of Ca in the egg cortex, which is called 'cortical flash', and the subsequent Ca wave. While the cortical flash is due to the ion influx through L-type Ca channels in starfish eggs, its amplitude was shown to be affected by the integrity of the egg cortex. Here, we investigated the contribution of cortical granules (CG) and yolk granules (YG) to the sperm-induced Ca signals in sea urchin eggs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2018
Starfish and sea urchin are excellent models to study the mechanisms that regulate oocyte maturation and egg activation. Hormonal stimulation of starfish oocytes and their following interaction with spermatozoa induce rapid changes of F-actin and Ca increases which are prerequisites for normal fertilization and development. Fully grown oocytes isolated from the gonads of starfish contain a large nucleus (∼60-70 μm) (termed germinal vesicle, GV), which is arrested at the first prophase of meiosis.
View Article and Find Full Text PDFBackground/aims: Eggs of all animal species display intense cytoplasmic Ca2+ increases at fertilization. Previously, we reported that unfertilized eggs of Astropecten aranciacus exposed to an actin drug latrunculin A (LAT-A) exhibit similar Ca2+ waves and cortical flashes after 5-10 min time lag. Here, we have explored the molecular mechanisms underlying this unique phenomenon.
View Article and Find Full Text PDFMarine animals relying on "external fertilization" provide advantageous opportunities to study the mechanisms of gamete activation and fusion, as well as the subsequent embryonic development. Owing to the large number of eggs that are easily available and handled, starfish and sea urchins have been chosen as favorable animal models in this line of research for over 150 years. Indeed, much of our knowledge on fertilization came from studies in the echinoderms.
View Article and Find Full Text PDFStarfish have been instrumental in many fields of biological and ecological research. Oocytes of Astropecten aranciacus, a common species native to the Mediterranean Sea and the East Atlantic, have long been used as an experimental model to study meiotic maturation, fertilization, intracellular Ca2+ signaling, and cell cycle controls. However, investigation of the underlying molecular mechanisms has often been hampered by the overall lack of DNA or protein sequences for the species.
View Article and Find Full Text PDF