Cytokines are involved in all stages of atherosclerosis, generally contributing to disease progression. Previously, members of the Interleukin (IL)-6 cytokine family, such as IL-6, oncostatin M, and cardiotrophin-1, have been extensively studied in atherosclerosis. However, the role of leukemia inhibitory factor (LIF), member of the IL-6 family, and its receptor (LIFR), remains to be further elucidated.
View Article and Find Full Text PDFBackground And Aims: Mast cell-derived heparin proteoglycans (HEP-PG) can be mimicked by bioconjugates carrying antithrombotic and anti-inflammatory properties. The dual antiplatelet and anticoagulant (APAC) construct administered, either locally or intravenously (i.v.
View Article and Find Full Text PDFBackground: Atherosclerosis is the major underlying pathology of cardiovascular disease and is driven by dyslipidemia and inflammation. Inhibition of the immunoproteasome, a proteasome variant that is predominantly expressed by immune cells and plays an important role in antigen presentation, has been shown to have immunosuppressive effects.
Methods: We assessed the effect of ONX-0914, an inhibitor of the immunoproteasomal catalytic subunits LMP7 (proteasome subunit β5i/large multifunctional peptidase 7) and LMP2 (proteasome subunit β1i/large multifunctional peptidase 2), on atherosclerosis and metabolism in LDLr and APOE*3-Leiden.
Mast cells have been associated with the progression and destabilization of advanced atherosclerotic plaques. Reducing intraplaque mast cell accumulation upon atherosclerosis progression could be a potent therapeutic strategy to limit plaque destabilization. Leukotriene B (LTB) has been reported to induce mast cell chemotaxis in vitro.
View Article and Find Full Text PDFAims: A hallmark of advanced atherosclerosis is inadequate immunosuppression by regulatory T (Treg) cells inside atherosclerotic lesions. Dyslipidemia has been suggested to alter Treg cell migration by affecting the expression of specific membrane proteins, thereby decreasing Treg cell migration towards atherosclerotic lesions. Besides membrane proteins, cellular metabolism has been shown to be a crucial factor in Treg cell migration.
View Article and Find Full Text PDFMacroautophagy (or autophagy) is a conserved cellular process in which cytoplasmic cargo is targeted for lysosomal degradation. Autophagy is crucial for the functional integrity of different subsets of T cells in various developmental stages. Since atherosclerosis is an inflammatory disease of the vessel wall which is partly characterized by T cell mediated autoimmunity, we investigated how advanced atherosclerotic lesions develop in mice with T cells that lack autophagy-related protein 7 (Atg7), a protein required for functional autophagy.
View Article and Find Full Text PDFBackground And Aims: Lipocalin-2 (Lcn2) is a glycoprotein which can be secreted by immune cells. Several studies in humans have suggested Lcn2 can be used as a biomarker for the detection of unstable atherosclerotic lesions, partly as it is known to interact with MMP-9.
Methods: In this study, we generated LdlrLcn2 mice to assess the functional role of Lcn2 in different stages of atherosclerosis.
Background And Aims: Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4 deficiency on macrophage function in vitro and atherosclerosis susceptibility in vivo was investigated.
Methods: The presence and localization of Prg4 was studied in atherosclerotic lesions.
Objective: Inflammasomes are multiprotein complexes, and their activation has been associated with cardiovascular disease. Inflammasome activation leads to secretion of caspase-1 by innate immune cells, resulting in the activation of interleukin-1β. Recently, a potent and selective inhibitor of the NLRP3 inflammasome, MCC950, was described.
View Article and Find Full Text PDFCC Chemokine Receptor 2 (CCR2) and its endogenous ligand CCL2 are involved in a number of diseases, including atherosclerosis. Several CCR2 antagonists have been developed as potential therapeutic agents, however their in vivo clinical efficacy was limited. In this report, we aimed to determine whether 15a, an antagonist with a long residence time on the human CCR2, is effective in inhibiting the development of atherosclerosis in a mouse disease model.
View Article and Find Full Text PDFToll-like receptors (TLR) provide a critical link between innate and adaptive immunity, both important players in atherosclerosis. Since evidence for the role of TLR5 is lacking, we aimed to establish this in the immune axis of atherosclerosis. We assessed the effect of the TLR5-specific ligand Flagellin on macrophage maturation and T-cell polarisation.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA antagonism using the small molecule Ki16425.
View Article and Find Full Text PDFAims: Myeloid-derived suppressor cells (MDSCs) form a heterogeneous population of cells composed of early myeloid progenitor cells and immature myeloid cells, which strongly suppress pro-inflammatory immune cells in inflammatory diseases. Currently, it is unknown whether MDSCs contribute to atherosclerosis, a chronic inflammatory disease in which accumulation of lipoproteins in the arterial wall activates the immune system causing abnormal vascular remodelling and vessel occlusion. Here, we investigated whether and how MDSCs contribute to the development of atherosclerosis.
View Article and Find Full Text PDFBackground: Staphylococcus aureus cell wall components can induce IL-10 responses by immune cells, which may be atheroprotective. Therefore, in this study, we investigated whether heat-killed S. aureus (HK-SA) could inhibit the development of atherosclerosis.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis.
View Article and Find Full Text PDFModulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This could result, in part, from decreased emigration of DCs from atherosclerotic lesions because of the high-cholesterol environment.
View Article and Find Full Text PDFAim: Neuropeptide Y is an abundantly expressed neurotransmitter capable of modulating both immune and metabolic responses related to the development of atherosclerosis. NPY receptors are expressed by a number of vascular wall cell types, among which mast cells. However, the direct effects of NPY on atherosclerotic plaque development and progression remain to be investigated.
View Article and Find Full Text PDFAims: The SDF-1α/CXCR4 dyad was previously shown by us and others to be instrumental in intimal hyperplasia as well as early stage atherosclerosis. We here sought to investigate its impact on clinically relevant stages of atherosclerosis in mouse and man.
Methods And Results: Immunohistochemical analysis of CXCR4 expression in human atherosclerotic lesions revealed a progressive accumulation of CXCR4(+) cells during plaque progression.
Objective: Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity.
View Article and Find Full Text PDFObjective: In atherosclerosis, Toll-like receptors (TLRs) are traditionally linked to effects on tissue macrophages or foam cells. RP105, a structural TLR4 homolog, is an important regulator of TLR signaling. The effects of RP105 on TLR signaling vary for different leukocyte subsets known to be involved in atherosclerosis, making it unique in its role of either suppressing (in myeloid cells) or enhancing (in B cells) TLR-regulated inflammation in different cell types.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
November 2013
Objective: Atherosclerosis is a chronic autoimmune-like disease in which lipids and fibrous elements accumulate in the arterial blood vessels. T cells are present within atherosclerotic plaques, and their activation is partially dependent on costimulatory signals, which can either provide positive or negative signals that promote T-cell activation or limit T-cell responses, respectively. T-cell immunoglobulin and mucin domain 3 (Tim-3) is a coinhibitory type 1 transmembrane protein that affects the function of several immune cells involved in atherosclerosis, such as monocytes, macrophages, effector T cells, and regulatory T cells.
View Article and Find Full Text PDFRationale: RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown.
View Article and Find Full Text PDFAims: Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets relevant to atherosclerosis.
Methods And Results: LDL receptor deficient mice that were transplanted with Sgpl1(-/-) bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls.
Background: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established.
Methodology And Principal Findings: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems.