In NMR experiments, it is crucial to control the temperature of the sample, especially when measuring kinetic parameters. Usually, it takes 2 to 5 min for the temperature of the sample inside the NMR probe to stabilize at a fixed value set for the experiment. However, the NMR sample tubes are flame-sealed in some cases, such as when working with volatile solvents, atmosphere-sensitive samples, or calibration samples for long-term use.
View Article and Find Full Text PDFThe concept of enthalpy-entropy compensation (EEC) is one of the highly debated areas of thermodynamics. The conformational change due to restricted double-bond rotation shows a classic two-site chemical exchange phenomenon and has been extensively studied. Fifty-four analogs of ,-diethyl--toluamide (DEET) as a model system were synthesized to study the thermodynamics of the partial amide bond character using nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFChalcones share some structural similarities with GW-1929, a highly-selective and potent agonist for peroxisome proliferator-activated receptor-gamma (PPARγ). In this study, we tested 53 structurally diverse chalcones to identify characteristics essential for PPARγ activation in a GAL4-based transactivation assay. This screen identified several novel chalcone agonists of PPARγ.
View Article and Find Full Text PDFWe have identified a new class of triarylmethyl amine compounds that can inhibit apolipoprotein E (apoE) production. ApoE is a cholesterol- and lipid-carrier protein implicated in aging, atherosclerosis, Alzheimer's Disease (AD), and other neurological and lipid-related disorders. Attenuation of apoE production is generally considered to be of therapeutic value.
View Article and Find Full Text PDFThe rotation around the amide bond in N,N-diethyl-m-toluamide (m-DEET) has been studied extensively and often used in laboratory instructions to demonstrate the phenomenon of chemical exchange. Herein, we show that a simple modification to N,N-diethyl-o-toluamide (o-DEET) significantly alters the dynamics of the restricted rotation around the amide bond due to steric interactions between the ring methyl group and the two N-ethyl groups. This alters the classic two-site exchange due to restricted rotation around the amide bond, to a three-site exchange, with the third conformation trapped at a higher-energy state compared to the other two.
View Article and Find Full Text PDFThis paper introduces a unique amino acid that can readily be incorporated into peptides to make them fold into beta-sheetlike structures that dimerize through beta-sheet interactions. This new amino acid, Orn(i-PrCO-Hao), consists of an ornithine residue with the beta-strand-mimicking amino acid Hao [J. Am.
View Article and Find Full Text PDF