Sequence analysis of segment 2 (seg-2) of three Indian bluetongue virus (BTV) isolates, Dehradun, Rahuri and Bangalore revealed 99% nucleotide identity amongst them and 96% with the reference BTV 23. Phylogenetic analysis grouped the isolates in 'nucleotype D'. The deduced amino acid (aa) sequence of the Bangalore isolate showed a high variability in a few places compared to other isolates.
View Article and Find Full Text PDFThis study deals with a comparative analysis of complete genome sequences of twenty-one serotype Asia 1 foot-and-mouth disease (FMD) field viruses isolated over a period of two decades from India, two vaccine strains and seven exotic sequences. The Indian viruses could be grouped in to three distinct lineages at the entire coding region, evolving independently probably under differential selection pressure as evident from the lineage-specific signatures identified. This comparison revealed 80% of amino acids at the polyprotein region to be invariant.
View Article and Find Full Text PDFSafety and immunogenicity of an experimental combined vaccine comprising attenuated strains of Peste des Petits ruminants virus (PPRV) and goat poxvirus (GTPV) was evaluated in goats. Goats immunized subcutaneously with 1 ml of vaccine consisting of 10(3) TCID(50) of each of PPRV and GTPV were monitored for clinical and serological responses for a period of 4 weeks postimmunization (pi) and postchallenge (pc). Specific antibodies directed to both GTPV and PPRV could be demonstrated by indirect ELISA and competitive ELISA, respectively following immunization.
View Article and Find Full Text PDFDetection of foot-and-mouth disease virus (FMDV) from clinical specimens by conventional sandwich enzyme-linked immunosorbent assay (ELISA) and virus isolation in cell culture is often compromised owing to limited sensitivity and inactivation during transit, respectively. A RT-PCR (oligoprobing) ELISA in both solid and aqueous phase hybridization formats targeting an across serotype conserved site at 3C-3D region was developed and its effectiveness was compared with that of the known targets at the IRES region. A non-isotopic RNA dot hybridization assay with colorimetric detection targeting both the IRES and the 3D region were also validated, which is capable of handling high throughput samples with ease.
View Article and Find Full Text PDFRecent reports indicated presence of two antigenic and genetic groups (genotypes VI and VII) of foot-and-mouth disease virus (FMDV) type A in India and are divergent from the vaccine strains. In order to choose suitable field isolate as candidate vaccine strain, anti-sera against representative isolates from both the genotypes and two in-use vaccine strains are tested in neutralization assay. Two candidate vaccine strains from both the genotypes are selected with close antigenic match to the field isolates.
View Article and Find Full Text PDFA multiplex PCR (mPCR) for the differentiation of Indian FMDV serotypes, O, A, Asia 1 and C was developed and evaluated on 142 clinical and 39 cell culture samples. On the latter samples both the tests worked well with 100% efficiency, whereas on clinical samples mPCR had better efficiency than ELISA. The test was found to be specific for FMDV.
View Article and Find Full Text PDFIndia is endemic for foot-and-mouth disease and it continues to be a major threat to the livestock industry despite vaccination programmes. In the present study, the ability of specific small interfering (si)RNAs directed against different genomic regions of foot-and-mouth disease virus (FMDV) to inhibit virus replication in BHK-21 cells was examined. For preliminary evaluation of possible siRNA-mediated FMDV inhibition, a cocktail of several unique populations of 12-30bp siRNAs were successfully produced corresponding to three target regions located at structural (VP3-VP1), non-structural (2A-2C), and non-structural-untranslated (3D-3'UTR) region of serotype Asia1.
View Article and Find Full Text PDFSheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV).
View Article and Find Full Text PDF