Metal-organic frameworks (MOFs) exhibit great promise for CO capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO adsorption capacity and synthesizable linkers.
View Article and Find Full Text PDFMolecular crystals have shallow potential energy landscapes, with multiple local minima separated by very small differences in total energy. Predicting molecular packing and molecular conformation in the crystal generally requires ab initio methods of high accuracy, especially when polymorphs are involved. We used dispersion-corrected density functional theory (DFT-D) to assess the capabilities of an evolutionary algorithm (EA) for the crystal structure prediction (CSP) of well-known but challenging high-energy molecular crystals (HMX, RDX, CL-20, and FOX-7).
View Article and Find Full Text PDFThe chemical pathway for synthesizing covalent organic frameworks (COFs) involves a complex medley of reaction sequences over a rippling energy landscape that cannot be adequately described using existing theories. Even with the development of state-of-the-art experimental and computational tools, identifying primary mechanisms of nucleation and growth of COFs remains elusive. Other than empirically, little is known about how the catalyst composition and water activity affect the kinetics of the reaction pathway.
View Article and Find Full Text PDFInsufficient availability of molten salt corrosion-resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high-throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of CrFeMnNi alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion-resistant alloy development can be accelerated by 2 to 3 orders of magnitude.
View Article and Find Full Text PDFThermo-responsive behavior of ethylene oxide (EO)-propylene oxide (PO) copolymers makes them suitable for many potential applications. Reproducing the origins of the tunable properties of EO-PO copolymers using coarse-grained (CG) models such as the MARTINI force field is critically important for building a better understanding of their behavior. In the present work, we have investigated the effects of coarse-graining on the water-polymer interaction across a temperature range.
View Article and Find Full Text PDFThe design of next-generation alloys through the integrated computational materials engineering (ICME) approach relies on multiscale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. Atomistic methods such as density functional theory (DFT) and molecular dynamics (MD) have been successful in predicting properties of never before studied compounds or phases. However, uncertainty quantification (UQ) of DFT and MD results is rarely reported due to computational and UQ methodology challenges.
View Article and Find Full Text PDFIncreasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed 'Nano-CarboScavengers' (NCS) with native properties for facile recovery via booms and mesh tools.
View Article and Find Full Text PDFMaterials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs.
View Article and Find Full Text PDFBackground: Head and neck cancer in Indian perspective predominantly relates to tobacco use. The present study explores the prevalence of oral ulcers and its association with addictions among the population of Uttar Pradesh and Rajasthan, India.
Methodology: The screening method in early detection of head and neck cancer is broadly symptom based.
We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales.
View Article and Find Full Text PDFThe phonon mediated vibrational up-pumping mechanisms assume an intact lattice and climbing of a vibrational ladder using strongly correlated multiphonon dynamics under equilibrium or near-equilibrium conditions. Important dynamic processes far from-equilibrium in regions of large temperature gradient after the onset of decomposition reactions in energetic solids are relatively unknown. In this work, we present a classical molecular dynamics (MD) simulation-based study of such processes using a nonreactive and a reactive potential to study a fully reacted and unreacted zone in RDX (1,3,5-trinitro-1,3,5-triazocyclohexane) crystal under nonequilibrium conditions.
View Article and Find Full Text PDFVertically oriented structures of single crystalline conductors and semiconductors are of great technological importance due to their directional charge carrier transport, high device density, and interesting optical properties. However, creating such architectures for organic electronic materials remains challenging. Here, we report a facile, controllable route for producing oriented vertical arrays of single crystalline conjugated molecules using graphene as the guiding substrate.
View Article and Find Full Text PDFChemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions.
View Article and Find Full Text PDFElectrocatalytic reduction of oxygen is composed of multiple steps, including the diffusion-adsorption-dissociation of molecular oxygen. This study explores the role of electrical double layer in aqueous medium in quantifying the rate of these coupled electrochemical processes at the electrode interface during oxygen reduction. The electronic, energetic, and configurational aspects of molecular oxygen diffusion and adsorption onto Cu(111) in water are identified through density functional theory based computations.
View Article and Find Full Text PDFPressure effects on the Raman vibrations of an energetic crystal FOX-7 (1, 1-diamino-2, 2-dinitroethene) were examined using density functional theory (DFT) calculations. High accuracy calculations were performed with a periodic plane-wave DFT method using norm-conserving pseudopotentials. Different exchange-correlation functionals were examined for their applicability in describing the structural and vibrational experimental data.
View Article and Find Full Text PDFCoupling molecular scale reaction kinetics with macroscopic combustion behavior is critical to understanding the influences of intermediate chemistry on energy propagation, yet bridging this multi-scale gap is challenging. This study integrates ab initio quantum chemical calculations and condensed phase density functional theory to elucidate factors contributing to experimentally measured high flame speeds (i.e.
View Article and Find Full Text PDFA multiscale simulation-based approach is presented for predicting anti-icing properties of nanocomposite coatings. Development of robust anti-icing coatings is a challenging task. An anti-icing coating that can prevent in-flight icing is of particular interest to the aircraft industry.
View Article and Find Full Text PDFActivation of molecular hydrogen is the first step in producing many important industrial chemicals that have so far required expensive noble-metal catalysts and thermal activation. We demonstrate here that aluminium doped with very small amounts of titanium can activate molecular hydrogen at temperatures as low as 90 K. Using an approach that uses CO as a probe molecule, we identify the atomistic arrangement of the catalytically active sites containing Ti on Al(111) surfaces, combining infrared reflection-absorption spectroscopy and first-principles modelling.
View Article and Find Full Text PDFThe effect of particle size on combustion efficiency is an important factor in combustion research. Gas-phase aluminum clusters in oxidizing environment constitute a relatively simple and extensively studied system. In an attempt to underscore the correlation between electronic structure, finite size effect, and reactivity in small aluminum clusters, reactions between aluminum, [Al(13)](-) cluster, and Teflon decomposition fragments were studied using theoretical calculations at the density functional theoretical level.
View Article and Find Full Text PDFWe have used reactive force field (ReaxFF) to investigate the mechanism of interaction of alanes on Al(111) surface. Our simulations show that, on the Al(111) surface, alanes oligomerize into larger alanes. In addition, from our simulations, adsorption of atomic hydrogen on Al(111) surface leads to the formation of alanes via H-induced etching of aluminum atoms from the surface.
View Article and Find Full Text PDFGas-phase reactions between aluminum particles and Teflon fragments were studied to develop a fundamental understanding of the decomposition reactions and combustion processes of the Al-Teflon composites. The reactions were investigated theoretically using ab initio calculations at the MP2/aug-cc-pVDZ level, with the final thermokinetic data obtained with coupled cluster theory (CCSD(T)/aug-cc-pVTZ). Among reactions under oxygen-lean conditions, CF(3) + Al --> CF(2) + AlF channel is the fastest, followed by the CF(2) + Al --> CF + AlF and CF + Al --> C + AlF channels.
View Article and Find Full Text PDFAlanes are believed to be the mass transport intermediate in many hydrogen storage reactions and thus important for understanding rehydrogenation kinetics for alanates and AlH3. Combining density functional theory (DFT) and surface infrared (IR) spectroscopy, we provide atomistic details about the formation of alanes on the Al(111) surface, a model environment for the rehydrogenation reactions. At low coverage, DFT predicts a 2-fold bridge site adsorption for atomic hydrogen at 1150 cm(-1), which is too weak to be detected by IR but was previously observed in electron energy loss spectroscopy.
View Article and Find Full Text PDFCubic nanoparticles of alpha-AlF(3) containing 864 and 2048 atoms were investigated by using molecular dynamics simulations. Significant structural rearrangements of these particles occurred, primarily at the edges and corners of the particles, and 3 and 5 membered (Al-F-)(n) ring structures were observed in addition to the 4-membered rings seen in bulk alpha-AlF(3). These 3 and 5 membered ring structures are, however, present in other metastable forms of AlF(3), which are formed at low temperatures from high surface area precursors.
View Article and Find Full Text PDFWe report the results of an experimental and theoretical study of hydrogen storage in sodium alanate (NaAlH(4)). Reversible hydrogen storage in this material is dependent on the presence of 2-4% Ti dopant. Our combined study shows that the role of Ti may be linked entirely to Ti-containing active catalytic sites in the metallic Al phase present in the dehydrogenated NaAlH(4).
View Article and Find Full Text PDF