Publications by authors named "Santanu Bag"

Introduction: Gamma pass percentage (GPP) is the predominant metric used for Patient Specific Quality Assurance (PSQA) in radiation therapy. The dimensionality of the measurement geometry in PSQA has evolved from 2D planar to 3D planar, and presently to state-of-the-art 3D volumetric geometry. We aim to critically examine the performance of the three-dimensional gammas vis-à-vis the older gamma metrics of lower dimensionality to determine their mutual fungibility in PSQA, using clinically approved Volumetric Arc Therapy (VMAT) plans.

View Article and Find Full Text PDF

Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers.

View Article and Find Full Text PDF

Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance.

View Article and Find Full Text PDF

Biological systems that can capture and store solar energy are rich in a variety of chemical functionalities, incorporating light-harvesting components, electron-transfer cofactors, and redox-active catalysts into one supramolecule. Any artificial mimic of such systems designed for solar fuels production will require the integration of complex subunits into a larger architecture. We present porous chalcogenide frameworks that can contain both immobilized redox-active Fe(4)S(4) clusters and light-harvesting photoredox dye molecules in close proximity.

View Article and Find Full Text PDF

We report the synthesis of metal-chalcogenide gels and aerogels from anionic chalcogenide clusters and linking metal ions. Metal ions such as Sb(3+) and Sn(2+), respectively chelated with tartrate and acetate ligands, react in solution with the chalcogenide clusters to form extended polymeric networks that exhibit gelation phenomena. Chalcogenide cluster anions with different charge densities, such as [Sn(2)S(6)](4-) and [SnS(4)](4-), were employed.

View Article and Find Full Text PDF

Aerogels are low-density porous materials, made mostly of air, for which hundreds of applications have been found in recent years. Inorganic oxide-based aerogels have been known for a long time, carbon aerogels were discovered in the early 1990s and sulfur- and selenium-based aerogels (chalcogels) are the most recent additions to this family. Here we present new aerogels made of Co(Ni)-Mo(W)-S networks with extremely large surface areas and porosity.

View Article and Find Full Text PDF

We describe the new nanostructured Pt/Ge/Se materials prepared from the molecular units [Ge2Se6](4-) and [GeSe4](4-) and linking Pt(2+) ions in the presence of surfactant micelles. X-ray diffraction coupled with transmission electron microscopy images reveals hexagonal pore symmetry. The solvent dependence and solution speciation of these building blocks were investigated by means of multinuclear NMR spectroscopy and by fast atom bombardment (FAB) mass spectroscopy and it is shown that rapid exchange equilibrium is reached between species like [Ge4Se10](4-), [Ge2Se6](4-), and [GeSe4](4-) in both water and formamide.

View Article and Find Full Text PDF

Inorganic porous materials are being developed for use as molecular sieves, ion exchangers, and catalysts, but most are oxides. We show that various sulfide and selenide clusters, when bound to metal ions, yield gels having porous frameworks. These gels are transformed to aerogels after supercritical drying with carbon dioxide.

View Article and Find Full Text PDF