Publications by authors named "Sansom M"

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable force field AMOEBA in MD simulations on different conformations of hBest1.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors.

View Article and Find Full Text PDF

The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol.

View Article and Find Full Text PDF

Aquaporins (AQPs) are recognized as transmembrane water channels that facilitate selective water permeation through their monomeric pores. Among the AQP family, AQP6 has an intriguing characteristic as an anion channel, which is allosterically controlled by pH conditions and is eliminated by a single amino acid mutation. However, the molecular mechanism of anion permeation through AQP6 remains unclear.

View Article and Find Full Text PDF

Membrane-bound O-acyltransferases (MBOATs) are membrane-embedded enzymes that catalyze acyl chain transfer to a diverse group of substrates, including lipids, small molecules, and proteins. MBOATs share a conserved structural core, despite wide-ranging functional specificity across both prokaryotes and eukaryotes. The structural basis of catalytic specificity, regulation and interactions with the surrounding environment remain uncertain.

View Article and Find Full Text PDF

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl- channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable forcefield AMOEBA in MD simulations on different conformations of hBest1.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging.

View Article and Find Full Text PDF

Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array.

View Article and Find Full Text PDF

Patched1 (PTCH1) is a tumor suppressor protein of the mammalian Hedgehog (HH) signaling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating ciliary cholesterol accessibility. Using extensive molecular dynamics simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15 to 20 kilojoule per mole for cholesterol export.

View Article and Find Full Text PDF

Cell membranes phase separate into ordered and disordered domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in and domains.

View Article and Find Full Text PDF

Phosphatase and tensin homologue (PTEN) and SH2-containing inositol 5'-phosphatase 2 (SHIP2) are structurally and functionally similar. They both consist of a phosphatase (Ptase) domain and an adjacent C2 domain, and both proteins dephosphorylate phosphoinositol-tri(3,4,5)phosphate, PI(3,4,5)P; PTEN at the 3-phophate and SHIP2 at the 5-phosphate. Therefore, they play pivotal roles in the PI3K/Akt pathway.

View Article and Find Full Text PDF

The membrane-bound O-acyltransferase (MBOAT) superfamily catalyses the transfer of acyl chains to substrates implicated in essential cellular functions. Aberrant function of MBOATs is associated with various diseases and MBOATs are promising drug targets. There has been recent progress in structural characterisation of MBOATs, advancing our understanding of their functional mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how chloride ions interact with a rhodopsin protein using different molecular dynamics simulations to understand the role of electronic polarization in binding.
  • It compares three force fields: a fixed-charge force field that doesn't account for polarization, one that includes polarization implicitly, and one that includes it explicitly.
  • Findings suggest that incorporating polarization leads to stronger ion binding, longer binding durations, and a second binding site, highlighting its significance in understanding anion behavior in protein interactions.
View Article and Find Full Text PDF

Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol for cholesterol export.

View Article and Find Full Text PDF

The mitochondrial electron transport chain comprises a series of protein complexes embedded in the inner mitochondrial membrane that generate a proton motive force oxidative phosphorylation, ultimately generating ATP. These protein complexes can oligomerize to form larger structures called supercomplexes. Cardiolipin (CL), a conical lipid, unique within eukaryotes to the inner mitochondrial membrane, has proven essential in maintaining the stability and function of supercomplexes.

View Article and Find Full Text PDF

G-protein-coupled receptors signal through cognate G proteins. Despite the widespread importance of these receptors, their regulatory mechanisms for G-protein selectivity are not fully understood. Here we present a native mass spectrometry-based approach to interrogate both biased signalling and allosteric modulation of the β-adrenergic receptor in response to various ligands.

View Article and Find Full Text PDF

The Martini 3 force field is a full reparametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance, it allows for a more accurate description of condensed phase systems. In the present work, we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3.

View Article and Find Full Text PDF

The canonical members of the Jagged/Serrate and Delta families of transmembrane ligands have an extracellular, amino-terminal C2 domain that binds to phospholipids and is required for optimal activation of the Notch receptor. Somatic mutations that cause amino substitutions in the C2 domain in human JAGGED1 (JAG1) have been identified in tumors. We found in reporter cell assays that mutations affecting an N-glycosylation site reduced the ligand's ability to activate Notch.

View Article and Find Full Text PDF

Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging.

View Article and Find Full Text PDF

Objective: To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels.

Methods: We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations.

View Article and Find Full Text PDF

Fibronectin Leucine-rich Repeat Transmembrane (FLRT 1-3) proteins are a family of broadly expressed single-spanning transmembrane receptors that play key roles in development. Their extracellular domains mediate homotypic cell-cell adhesion and heterotypic protein interactions with other receptors to regulate cell adhesion and guidance. These in trans FLRT interactions determine the formation of signaling complexes of varying complexity and function.

View Article and Find Full Text PDF

Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown.

View Article and Find Full Text PDF

Interactions between ions and water at hydrophobic interfaces within ion channels and nanopores are suggested to play a key role in the movement of ions across biological membranes. Previous molecular-dynamics simulations have shown that anion affinity for aqueous/hydrophobic interfaces can be markedly influenced by including polarization effects through an electronic continuum correction. Here, we designed a model biomimetic nanopore to imitate the polar pore openings and hydrophobic gating regions found in pentameric ligand-gated ion channels.

View Article and Find Full Text PDF

Peripheral membrane proteins (PMPs) can reversibly and specifically bind to biological membranes to carry out functions such as cell signalling, enzymatic activity, or membrane remodelling. Structures of these proteins and of their lipid-binding domains are typically solved in a soluble form, sometimes with a lipid or lipid headgroup at the binding site. To provide a detailed molecular view of PMP interactions with the membrane, computational methods such as molecular dynamics (MD) simulations can be applied.

View Article and Find Full Text PDF

Flycatcher1 (FLYC1), a MscS homolog, has recently been identified as a candidate mechanosensitive (MS) ion channel involved in Venus flytrap prey recognition. FLYC1 is a larger protein and its sequence diverges from previously studied MscS homologs, suggesting it has unique structural features that contribute to its function. Here, we characterize FLYC1 by cryo-electron microscopy, molecular dynamics simulations, and electrophysiology.

View Article and Find Full Text PDF