Publications by authors named "Sanqing Huang"

Conductive hydrogels have shown promising application prospects in the field of flexible sensors, but they often suffer from poor mechanical properties, low sensitivity, and lack of frost resistance. Herein, we report a tough, highly sensitive, and antifreeze strain sensor assembled from a conductive organohydrogel composed of a dual-cross-linked polyacrylamide and poly(vinyl alcohol) (PVA) network, as well as MXene nanosheets as nanofillers and poly(3,4-ethylenedioxythiophene)-doped poly(styrenesulfonate) (PEDOT/PSS) as the main conducting component (PPMP-OH organohydrogel). The tensile strength and toughness of PPMP-OH had been greatly enhanced by MXene nanosheets due to the mechanical reinforcement of MXene nanosheets, as well as various strong noncovalent interactions formed in the organohydrogels.

View Article and Find Full Text PDF

Conductive hydrogels have attracted widespread attention because of their integrated characteristics of being stretchable, deformable, adhesive, self-healable, and conductive. Herein, we report a highly conductive and tough double-network hydrogel based on a double cross-linked polyacrylamide (PAAM) and sodium alginate (SA) network with conducting polypyrrole nanospheres (PPy NSs) uniformly distributed in the network (PAAM-SA-PPy NSs). SA was employed as a soft template for synthesis of PPy NSs and distribution of PPy NSs uniformly in the hydrogel matrix to construct SA-PPy conductive network.

View Article and Find Full Text PDF

Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time.

View Article and Find Full Text PDF

Persistent free radicals (PFRs) have mainly been reported as negative species. Here we report a positive role of PFRs in enhancing reactive oxygen species (ROS) generation for an extreme rate enhancement in environmental pollutant decomposition.

View Article and Find Full Text PDF

The design of catalytic oxidation processes with high efficiency has attracted considerable attention for a long while in environmental catalysis. In this work, a novel oxidation system, CFs-CoPc/PMS, was developed by coupling cellulosic fibers-bonded cobalt phthalocyanine (CFs-CoPc) with peroxymonosulfate (PMS). CFs-CoPc/PMS system could effectively decolorize azo dyes such as Acid Red 1 (AR1) with almost 100% decolorization efficiency in 35 min, suggesting that the CFs-CoPc/PMS system was a highly efficient oxidation process.

View Article and Find Full Text PDF

Conjugated polymers have been investigated for a number of applications in optoelectronics and sensing due to their important electronic and optical properties. For instance, polydiacetylene (PDA) may change color in response to external stimuli and has been extensively explored as a material for chromatic sensors. However, the practical applications of PDA materials have been largely hampered by their irreversible chromatic transitions under limited stimuli such as temperature, pH, and chemical.

View Article and Find Full Text PDF

Highly ordered lamellar polydiacetylene nanocomposites are synthesized by assembling polydiacetylene and azobenzene through a ready solution process. The trans-to-cis transition of azobenzene under UV light induces a conformational change of polydiacetylene with a color change from blue to red.

View Article and Find Full Text PDF

Two homopolymers assemble into nanoparitcles in a common solvent of water through ionic complexation. These nanoparticles reversibly and rapidly respond to both pH and temperature, and are particularly promising as intelligent systems.

View Article and Find Full Text PDF

A simple two-step electrochemical method is proposed for the synthesis of nanowire-based polypyrrole hierarchical structures. In the first step, microstructured polypyrrole films are prepared by electropolymerization. Then, polypyrrole nanowires are electrodeposited on the surface of the as-synthesized microstructured polypyrrole films.

View Article and Find Full Text PDF