Direct ink writing of multiple mineral materials (M) coupled with simulation analysis is an optimization solution in accordance with low-carbon and sustainable manufacturing. It improves the ability to imitate natural biological iterative optimization, and accurately obtained data for geological model tests to effectively help prevent natural disasters. This article investigates the effects of equivalent materials on the direct ink writing and permeability behaviors through geological simulation models.
View Article and Find Full Text PDFSiO ceramic parts with complex structures were formed by additive manufacturing technology via a light curing method combined with a heat treatment process. To reveal the influence mechanism of rheology and formability of SiO ceramic slurry, the microstructure, morphology, and properties of light-cured SiO ceramic samples were characterized by a viscosity test, thermogravimetric analysis (TG-DTG), X-ray diffraction (XRD), a scanning electron microscope (SEM), and a series of tests for physical properties (bending strength, mass burning rate, and densification). The results indicate that the main effect of the dispersant-type factor was more significant than the pH value.
View Article and Find Full Text PDFThe use of three-dimensional (3D) printing technology to form ceramic materials can greatly reduce the technical difficulty and cost of preparing special-shaped ceramic parts. In this work, the formation of the 3D structure of ceramic products was achieved through light-curing 3D printing technology. The semi-solid ceramic precursor fluid prepared from nano alumina particles (AlO), photocurable polyurethane acrylate (PUA) and isobornyl methacrylate (IBOMA) resin was used to realize ceramic fluid with self-made light-curing 3D printing equipment.
View Article and Find Full Text PDF