Publications by authors named "Sanne Gottschalk"

The analysis of how antimicrobial peptides (AMPs) interact with bacterial membranes and intracellular targets is important for our understanding of how these molecules affect bacteria. Increased knowledge may aid the design of AMPs that work on their target bacterium without inducing bacterial resistance. Here, we describe different methods to investigate the mode of action of peptides against the Gram-positive bacterium Staphylococcus aureus.

View Article and Find Full Text PDF

The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

The rapid rise in antibiotic-resistant pathogens is causing increased health concerns, and consequently there is an urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs), which have been isolated from a wide range of organisms, represent a very promising class of novel antimicrobials. In the present study, the analogue FL9, based on the amphibian AMP fallaxin, was studied to elucidate its mode of action and antibacterial activity against the human pathogen Staphylococcus aureus.

View Article and Find Full Text PDF

Background: The increase in antibiotic resistant bacteria has led to renewed interest in development of alternative antimicrobial compounds such as antimicrobial peptides (AMPs), either naturally-occurring or synthetically-derived. Knowledge of the mode of action (MOA) of synthetic compounds mimicking the function of AMPs is highly valuable both when developing new types of antimicrobials and when predicting resistance development. Despite many functional studies of AMPs, only a few of the synthetic peptides have been studied in detail.

View Article and Find Full Text PDF

Background: Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), have emerged as potential new therapeutics and their antimicrobial spectrum covers a wide range of target organisms. However, the mode of action and the genetics behind the bacterial response to HDPs is incompletely understood and such knowledge is required to evaluate their potential as antimicrobial therapeutics. Plectasin is a recently discovered HDP active against Gram-positive bacteria with the human pathogen, Staphylococcus aureus (S.

View Article and Find Full Text PDF

In recent years, small RNAs (sRNAs) have been identified as important regulators of gene expression in bacteria. Most sRNAs are encoded from intergenic regions and are only expressed under highly specific growth conditions. In Staphylococcus aureus, the alternative sigma factor, σ(B), is known to contribute to the overall stress response, antibiotic resistance, and virulence.

View Article and Find Full Text PDF

The two-component system CesRK of Listeria monocytogenes responds to cell wall-acting antibiotics. We show here that CesRK controls the transcription of several cell envelope-related genes. The CesRK-dependent induction of these genes may be viewed as an attempt by L.

View Article and Find Full Text PDF