Design of direct Z-scheme heterojunction photocatalyst is considered as an effective strategy to fully use the high redox potential photogenerated charge carriers. This work reports a novel method for investigating the photosynergistic performance of the Z-scheme MoO/BiO/g-CN (MBG) photocatalyst with peroxymonosulfate (PMS) for the solar degradation of tetracycline hydrochloride (TCH), a model of organic pollutants in wastewater. The results showed a better strategy to activate PMS via accelerating the redox cycle (Mo/Mo), which ultimately induces the successive generation of highly reactive oxygen species.
View Article and Find Full Text PDFHere, a novel method for synthesis of heterostructured TiO-MoO (MT) nanosheets photocatalyst by utilizing a facile electrochemical method and examined it's photocatalytic activity by the degradation of tetracycline hydrochloride (TCH), a model of organic pollutants, in the presence of peroxymonosulfate (PMS) under solar light irradiation (SL) was reported for the first time. The influence of several factors on the degradation efficiency including the initial concentration of TCH, solution pH, catalyst dosage, PMS concentration, and the existence of inorganic anions was explored. The MT-15/PMS system displayed a promising photocatalytic performance and up to 97% of TCH was degraded in 90 min the rate of the degradation reaction of MT-15/PMS was the highest (0.
View Article and Find Full Text PDFIn this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2016
This research work presents the synthesis of ZnO nanopellets (ZNPs) by low temperature hydrothermal approach and evaluation of their antibacterial activity, cytotoxicity in vitro and in vivo. Structural and morphological studies conducted on the sample reveal hexagonal ZNPs in the size range of 250-500 nm. Surface area measurements showed high porosity of the sample compared to conventional ZnO nanoparticles.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2010
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO(2) and modified neodymium doped TiO(2) hybrid nanoparticles. For the first time, surface modification of Nd(3 +) doped TiO(2) hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy.
View Article and Find Full Text PDF