Aims/hypothesis: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons.
View Article and Find Full Text PDFdifferentiation of human induced pluripotent stem cells (iPSCs) into beta cells represents an important cell source for diabetes research. Here, we fully characterized iPSC-derived beta cell function and in humanized mice. Using a 7-stage protocol, human iPSCs were differentiated into islet-like aggregates with a yield of insulin-positive beta cells comparable to that of human islets.
View Article and Find Full Text PDFFriedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis.
View Article and Find Full Text PDFAims/hypothesis: During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk.
View Article and Find Full Text PDFBackground: Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches.
Scope Of Review: Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes.
Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut.
View Article and Find Full Text PDFSmall RNA molecules, including microRNAs (miRNAs), play critical roles in regulating pluripotency, proliferation and differentiation of embryonic stem cells. miRNA-offset RNAs (moRNAs) are similar in length to miRNAs, align to miRNA precursor (pre-miRNA) loci and are therefore believed to derive from processing of the pre-miRNA hairpin sequence. Recent next generation sequencing (NGS) studies have reported the presence of moRNAs in human neurons and cancer cells and in several tissues in mouse, including pluripotent stem cells.
View Article and Find Full Text PDFThe pancreas and the liver are developmentally closely connected with each other.The development of stem cell technology has enabled the production of functional pancreatic endocrine cells and hepatocytes from pluripotent human stem cells. The differentiation of cells takes place by mimicking the events of developmental biology on a cell culture dish.
View Article and Find Full Text PDFCorrect interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive.
View Article and Find Full Text PDFActivin/Nodal and Wnt signaling are known to play important roles in the regional specification of endoderm. Here we have investigated the effect of the length of stimulation with Activin A plus Wnt3a on the development of hepatic and pancreatic progenitors from the definitive endoderm (DE) cells derived from human pluripotent stem cells (hPSC). We show that DE-cells derived from hPSC with 3 days high Activin A and Wnt3a treatment were able to differentiate further into both tested endodermal lineages.
View Article and Find Full Text PDFFunctional hepatocytes, cardiomyocytes, neurons, and retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) could provide a defined and renewable source of human cells relevant for cell replacement therapies, drug discovery, toxicology testing, and disease modeling. In this study, we investigated the differences between the differentiation potentials of three hESC lines, four retrovirally derived hiPSC lines, and one hiPSC line derived with the nonintegrating Sendai virus technology. Four independent protocols were used for hepatocyte, cardiomyocyte, neuronal, and RPE cell differentiation.
View Article and Find Full Text PDFLectins are carbohydrate-binding proteins, which occur ubiquitously in nature and are abundant in all living organisms from bacteria to mammals. They have several biological functions among which cell adhesion is well known and characterized. Based on the characterization of the glycome of human embryonic stem cells (hESCs), we have investigated the properties of glycan-binding lectins as a novel class of culture support matrices supporting hESC culture.
View Article and Find Full Text PDF