Deregulated epithelial-to-mesenchymal transition constitutes one of the major aspects of cancer progression. In this study, to identify key molecular principles of EMT pathway in prostate carcinogenesis, an elaborate gene expression profiling was conducted by qRT-PCR and Western blot analyses. A preponderance of mesenchymal trait was observed in the pathological samples of prostate cancer.
View Article and Find Full Text PDFAberrant restoration of AR activity is linked with prostate tumor growth, therapeutic failures and development of castrate-resistant prostate cancer. Understanding the processes leading to AR-reactivation should provide the foundation for novel avenues of drug discovery. A differential gene expression study was conducted using biopsies from CaP and BPH patients to identify the components putatively responsible for reinstating AR activity in CaP.
View Article and Find Full Text PDFTransforming growth factor-β signaling exerts divergent effects on normal and cancer cells, although mechanism underlying this differential behavior remains unclear. In this study, expression of 94 genes pertaining to the TGF-β signaling pathway was compared between tumor and benign tissue samples from the human prostate gland to identify major discriminators driving prostate carcinogenesis. E2F5 was identified as one of the most deregulated genes in prostate cancer tissues, predominantly in samples with Gleason-score 6.
View Article and Find Full Text PDFProstate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate.
View Article and Find Full Text PDF