Background: The increasing resistance of Candida albicans biofilms underscores the urgent need for effective antifungals. This study evaluated the efficacy of zingerone and elucidated its mode of action against C. albicans ATCC 90028 and clinical isolate C1.
View Article and Find Full Text PDFFungal infections are becoming a severe threat to the security of global public health due to the extensive use of antibiotic medications and the rise in immune-deficient patients globally. Additionally, there is an increase in the development of fungus resistance to available antifungal medications. It is necessary to focus on the development of new antifungal medications in order to address these problems.
View Article and Find Full Text PDFArch Microbiol
May 2024
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C.
View Article and Find Full Text PDFCandida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation.
View Article and Find Full Text PDFIn the recent years, occurrence of candidiasis has increased drastically which leads to significant mortality and morbidity mainly in immune compromised patients. Glucosinolate (GLS) derivatives are reported to have antifungal activities. Ethyl isothiocyanate (EITC) and its antifungal activity and mechanism of action is still unclear against Candida albicans.
View Article and Find Full Text PDFCruciferous vegetables and mustard oil are rich in the glucosinolate group of molecules. Isothiocyanates are an important group of glucosinolate derivatives. These derivatives have various bioactive properties, including antioxidant, antibacterial, anticarcinogenic, antifungal, antiparasitic, herbicidal and antimutagenic activity.
View Article and Find Full Text PDFAndrographis paniculata is home to a rich variety of molecules especially andrographolide and its derivatives. Clinical properties of the andrographolide are multifarious and include: analgesic, antipyretic, antiretroviral, antiproliferative, antimalarial, antithrombotic, antihyperglycemic, antiurolethial, antilesihmaniasis, hepatoprotective, immune-modulatory, protective against alcohol induced toxicity and cardioproetcive activity and anticancer activity. Andrographolide, neoandrographolide, dehydroandrographolide and several natural and synthetic derivatives of it: 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, dehydroandrographolide succinic acid monoester (DAMS), 14-ά-lipoyl andrographolide (AL-1), 14-acetyl-3,9-isopropyl-ideneandrographolide, 14-acetylandrographolide, 3,14,19-triacetylandrographolide, and 3,9-isopropyl-idene andrographolide, are shown to possess significant antiviral activity against HIV, influenza A, HBV, HCV, HPP and HSV.
View Article and Find Full Text PDFFluoroquinolines, the widely used antibacterial antibiotics, have been shown to interact with human DNA topoisomerases supporting their use as repurposed cancer drugs in humans. In this communication molecular docking of eleven Fluoroquinolines against predicted structure of Topoisomerase II is reported for the first time. topoisomerase II structure prediction was done by using homology modeling tool.
View Article and Find Full Text PDFWe have analyzed the expressions of genes which regulate Ras-cAMP-EFG1 and CEK1-MAPK pathways involved in yeast to hyphal form morphogenesis in Candida albicans. The expression profile of genes associated with serum-induced morphogenesis showed reduced expressions of genes involved in these pathways by the treatment with biofabricated silver nanoparticles. Cell elongation gene, ECE1, was downregulated by 5.
View Article and Find Full Text PDFThe human pathogen Candida albicans can grow as a biofilm on host tissues and on the surfaces of different prosthetic devices in a patient's body. Various studies have reported that biofilms formed by C. albicans are resistant to most of the currently used antibiotics including the widely prescribed drug, fluconazole.
View Article and Find Full Text PDFAnti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C.
View Article and Find Full Text PDFDicyclomine is a human muscarinic acetylcholine receptor antagonist used for the treatment of abdominal cramps. We are reporting here that dicyclomine can inhibit the in vitro growth and virulence factors of the human pathogen Candida albicans very effectively. Dicyclomine inhibited adhesion, early biofilm, mature biofilm, and planktonic growth.
View Article and Find Full Text PDFCapric acid and caprylic acid are the dietary food components. They are found to inhibit the virulence factors like morphogenesis, adhesion, and biofilm formation in the human pathogenic yeast Candida albicans. Our study demonstrated that yeast-to-hyphal signal transduction pathways were affected by capric acid and caprylic acid.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2016
DNA relaxation is an important step in DNA replication. DNA topoisomerases play a major role in DNA relaxation. Hence these enzymes are important targets for cancer drugs.
View Article and Find Full Text PDFFluoroquinolines are broad spectrum fourth generation antibiotics. Some of the Fluoroquinolines exhibit antifungal activity. We are reporting the potential mechanism of action of a fluoroquinoline antibiotic, moxifloxacin on the growth, morphogenesis and biofilm formation of the human pathogen Candida albicans.
View Article and Find Full Text PDFCandidiasis involving the biofilms of is a threat to immunocompromised patients. biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti- activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms.
View Article and Find Full Text PDFBackground: Candida biofilm and associated infections is a serious threat to the large population of immunocompromised patients. Biofilm growth on prosthetic devices or host tissue shows reduced sensitivity to antifungal agents and persists as a reservoir of infective cells. Options for successful treatment of biofilm associated Candida infections are restricted because most of the available antifungal drugs fail to eradicate biofilms.
View Article and Find Full Text PDFOphthalmic mycoses including corneal keratitis or endophthalmitis affects 6-million persons/year and can cause blindness. Its management requires antifungals to penetrate the ocular tissue. Oral use of Ketoconazole (KTZ), the first broad-spectrum antifungal to be marketed, is now restricted to life-threatening infections due to severe adverse effects and drug-interactions.
View Article and Find Full Text PDFInfections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C.
View Article and Find Full Text PDFBiofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C.
View Article and Find Full Text PDFBackground: Asaronaldehyde (2, 4, 5-trimethoxybeznaldehyde) is an active component of Acorus gramineus rhizome. This study aims to evaluate the anti-Candida efficacy of asaronaldehyde and its three structural isomers, namely, 2, 3, 4-trimethoxybenzaldehyde, 3, 4, 5-trimethoxybenzaldehyde, and 2, 4, 6- trimethoxybenzaldehyde.
Methods: Susceptibility testing of test compounds was carried out using standard methodology (M27-A2) as per clinical and laboratory standards institute guidelines.
Biofilms formed by Candida albicans, a human pathogen, are known to be resistant to different antifungal agents. Novel strategies to combat the biofilm associated Candida infections like multiple drug therapy are being explored. In this study, potential of chloroquine to be a partner drug in combination with four antifungal agents, namely fluconazole, voriconazole, amphotericin B, and caspofungin, was explored against biofilms of C.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
October 2012
Background: Biofilms formed by Candida albicans are resistant towards most of the available antifungal drugs. Therefore, infections associated with Candida biofilms are considered as a threat to immunocompromised patients. Combinatorial drug therapy may be a good strategy to combat C.
View Article and Find Full Text PDFEstrogen receptor-alpha (ERalpha) promotes proliferation of breast cancer cells, whereas tumor suppressor protein p53 impedes proliferation of cells with genomic damage. Whether there is a direct link between these two antagonistic pathways has remained unclear. Here we report that ERalpha binds directly to p53 and represses its function.
View Article and Find Full Text PDF