Self-propelling active particles are an exciting and interdisciplinary emerging area of research with projected biomedical and environmental applications. Due to their autonomous motion, control over these active particles that are free to travel along individual trajectories, is challenging. This work uses optically patterned electrodes on a photoconductive substrate using a digital micromirror device (DMD) to dynamically control the region of movement of self-propelling particles (i.
View Article and Find Full Text PDFTo address and extend the finite lifetime of Mg-based micromotors due to the depletion of the engine (Mg-core), we examine electric fields, along with previously studied magnetic fields, to create a triple-engine hybrid micromotor for driving these micromotors. Electric fields are a facile energy source that is not limited in its operation time and can dynamically tune the micromotor mobility by simply changing the frequency and amplitude of the field. Moreover, the same electrical fields can be used for cell trapping and transport as well as drug delivery.
View Article and Find Full Text PDFLiquid-infused slippery surfaces have replaced structural superhydrophobic surfaces in a plethora of emerging applications, hallmarked by their favorable self-healing and liquid-repelling characteristics. Their ease of fabrication on different types of materials and increasing demand in various industrial applications have triggered research interests targeted toward developing an environmental-friendly, flexible, and frugal substrate as the underlying structural and functional backbone. Although many expensive polymers such as polytetrafluoroethylene have so far been used for their fabrication, these are constrained by their compromised flexibility and non-ecofriendliness due to the use of fluorine.
View Article and Find Full Text PDFAxial gradients in wall elasticity may have significant implications in the deformation and flow characteristics of a narrow fluidic conduit, bearing far-reaching consequences in physiology and bio-engineering. Here, we present a theoretical and experimental framework for fluid-structure interactions in microfluidic channels with axial gradients in wall elasticity, in an effort to arrive at a potential conceptual foundation for in vitro study of mirovascular physiology. Towards this, we bring out the static deformation and steady flow characteristics of a circular microchannel made of polydimethylsiloxane (PDMS) bulk, considering imposed gradients in the substrate elasticity.
View Article and Find Full Text PDFDiffusion of colored dye on water saturated paper substrates has been traditionally exploited with great skill by renowned water color artists. The same physics finds more recent practical applications in paper-based diagnostic devices deploying chemicals that react with a bodily fluid yielding colorimetric signals for disease detection. During spontaneous imbibition through the tortuous pathways of a porous electrolyte saturated paper matrix, a dye molecule undergoes diffusion in a complex network of pores.
View Article and Find Full Text PDFEnhancing the sensitivity of colorimetric detection in paper-devices is a quintessential step in achieving frugal diagnosis. Here, we demonstrate an effective way of improving the detection sensitivity of paper-based devices, as mediated by electro-kinetic mechanisms. By directly employing blood plasma, we investigate the electro-kinetic clustering of glucose, a neutral molecule in paper devices.
View Article and Find Full Text PDFDeveloping low-weight, frugal, and sustainable power sources for resource-limited settings appears to be a challenging proposition for the advancement of next-generation sensing devices and beyond. Here, we report the use of centimeter-sized simple wet fabric pieces for electrical power generation by deploying the interplay of a spontaneously induced ionic motion across fabric nanopores due to capillary action and simultaneous water evaporation by drawing thermal energy from the ambient. Unlike other reported devices with similar functionalities, our arrangement does not necessitate any input mechanical energy or complex topographical structures to be embedded in the substrate.
View Article and Find Full Text PDFWe exploit the combinatorial advantage of electrokinetics and tortuosity of a cellulose-based paper network on laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance for 12 days) 'paper-and-pencil'-based device for energy harvesting applications. We successfully achieve harvesting of a maximum output power of ∼640 pW in a single channel, while the same is significantly improved (by ∼100 times) with the use of a multichannel microfluidic array (maximum of up to 20 channels). Furthermore, we also provide theoretical insights into the observed phenomenon and show that the experimentally predicted trends agree well with our theoretical calculations.
View Article and Find Full Text PDFWe investigate electroosmotic flow of two immiscible viscoelastic fluids in a parallel plate microchannel. Contrary to traditional analysis, the effect of the depletion layer is incorporated near the walls, thereby capturing the complex coupling between rheology and electrokinetics. Toward ensuring realistic prediction, we show the dependence of electroosmotic flow rate on the solution pH and polymer concentration of the complex fluid.
View Article and Find Full Text PDF