Publications by authors named "Sankaran Subramanian"

This study aims to assess the progress of geographic, socioeconomic, and demographic disparities in Covid-19 vaccination coverage in Brazil over the first two years of the vaccination campaign. Data from the National Immunization Program Information System were used to estimate covid-19 vaccine coverage. Brazilian municipalities were divided into two groups based on their vaccine coverage for the booster dose.

View Article and Find Full Text PDF

Sporadic evidence is available on the association of consuming multiple substances with the risk of hypertension among adults in India where there is a substantial rise in cases. This study assesses the mutually exclusive and mixed consumption patterns of alcohol, tobacco smoking and smokeless tobacco use and their association with hypertension among the adult population in India. Nationally representative samples of men and women drawn from the National Family and Health Survey (2015-2016) were analyzed.

View Article and Find Full Text PDF

Functionalized carbon dots (CDs) derived from Citrobacter freundii bacterial cells were used for selective detection of Cr(VI). A microwave-heating-based green synthesis approach is adopted to produce functionalized CDs from C. freundii bacterial cells (CF-CDs).

View Article and Find Full Text PDF

Objectives: This study explores population-level variation in different types of health insurance coverage in India. We aimed to estimate the extent to which contextual factors at community, district, and state levels may contribute to place-based inequalities in coverage after accounting for household-level socioeconomic factors.

Methods: We used data from the 2015-2016 National Family Health Survey in India, which provides the most recent and comprehensive information available on reports of different types of household health insurance coverage.

View Article and Find Full Text PDF

An excessive RF power requirement is one of the main obstacles in the clinical translation of EPR imaging. The radio frequency (RF) pulses used in EPR imaging to excite electron spins must be very short to match their fast relaxation. With traditional pulse schemes and ninety degree flip angles, this can lead to either unsafe specific absorption rate (SAR) levels or unfeasibly long repetition times.

View Article and Find Full Text PDF

Purpose: Spin-lattice relaxation rate (R )-based time-domain EPR oximetry is reported for in vivo applications using a paramagnetic probe, a trityl-based Oxo71.

Methods: The R dependence of the trityl probe Oxo71 on partial oxygen pressure (pO ) was assessed using single-point imaging mode of spatial encoding combined with rapid repetition, similar to T -weighted MRI, for which R was determined from 22 repetition times ranging from 2.1 to 40.

View Article and Find Full Text PDF

Modeling variation at population level has become increasingly valued, but no clear application exists for modeling differential variation in health between individuals within a given population. We applied Goldstein's method (in: Everrit, Howell (eds) Encyclopedia of statistics in behavioral science, Wiley, Hoboken, 2005) to model individual heterogeneity in body mass index (BMI) as a function of basic sociodemographic characteristics, each independently and jointly. Our analytic sample consisted of 643,315 non-pregnant women aged 15-49 years pooled from the latest Demographic Health Surveys (rounds V, VI, or VII; years 2005-2014) across 57 low- and middle-income countries.

View Article and Find Full Text PDF

Purpose: X-ray irradiation of tumors causes diverse effects on the tumor microenvironment, including metabolism. Recent developments of hyperpolarized (13)C-MRI enabled detecting metabolic changes in tumors using a tracer [1-(13)C]pyruvate, which participates in important bioenergetic processes that are altered in cancers. Here, we investigated the effects of X-ray irradiation on pyruvate metabolism in squamous cell carcinoma (SCCVII) and colon cancer (HT-29) using hyperpolarized (13)C-MRI.

View Article and Find Full Text PDF

Background: TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302.

View Article and Find Full Text PDF

Purpose: Electron paramagnetic resonance imaging has surfaced as a promising noninvasive imaging modality that is capable of imaging tissue oxygenation. Due to extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from single-point imaging and inherently suffers from limited spatial and temporal resolution, preventing localization of small hypoxic tissues and differentiation of hypoxia dynamics, making accelerated imaging a crucial issue.

Methods: In this study, methods for accelerated single-point imaging were developed by combining a bilateral k-space extrapolation technique with model-based reconstruction that benefits from dense sampling in the parameter domain (measurement of the T2 (*) decay of a free induction delay).

View Article and Find Full Text PDF

Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.

View Article and Find Full Text PDF

Purpose: Electron paramagnetic resonance imaging has emerged as a promising noninvasive technology to dynamically image tissue oxygenation. Owing to its extremely short spin-spin relaxation times, electron paramagnetic resonance imaging benefits from a single-point imaging scheme where the entire free induction decay signal is captured using pure phase encoding. However, direct T2 (*)/pO2 quantification is inhibited owing to constant magnitude gradients which result in time-decreasing field of view.

View Article and Find Full Text PDF

Time-domain electron paramagnetic resonance imaging is currently a useful preclinical molecular imaging modality in experimental animals such as mice and is capable of quantitatively mapping hypoxia in tumor implants. The microseconds range relaxation times (T1 and T2) of paramagnetic tracers and the large bandwidths (tens of MHz) to be excited by electron paramagnetic resonance pulses for spatial encoding makes imaging of large objects a challenging task. The possibility of using multiple array coils to permit studies on large sized object is the purpose of the present work.

View Article and Find Full Text PDF

Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse.

View Article and Find Full Text PDF

Narrow-line spin probes derived from the trityl radical have led to the development of fast in vivo time-domain EPR imaging. Pure phase-encoding imaging modalities based on the single-point imaging scheme have demonstrated the feasibility of three-dimensional oximetric images with functional information in minutes. In this article, we explore techniques to improve the temporal resolution and circumvent the relatively short biological half-lives of trityl probes using partial k-space strategies.

View Article and Find Full Text PDF

Environmental concerns regarding the use of certain chemicals in the froth flotation of minerals have led investigators to explore biological entities as potential substitutes for the reagents in vogue. Despite the fact that several microorganisms have been used for the separation of a variety of mineral systems, a detailed characterization of the biochemical molecules involved therein has not been reported so far. In this investigation, the selective flotation of sphalerite from a sphalerite-galena mineral mixture has been achieved using the cellular components of Bacillus species.

View Article and Find Full Text PDF

The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors.

View Article and Find Full Text PDF

A novel time-domain spectroscopic EPR imaging approach, that is a unique combination of already known techniques, is described. The first one is multi-gradient Single Point Imaging involving pure phase-encoding where the oximetry is based on T(2)(∗). Line width derived from T(2)(∗) is subject to susceptibility effects and therefore needs system-dependent line width calibrations.

View Article and Find Full Text PDF

Electron paramagnetic resonance imaging (EPRI) can be used to noninvasively and quantitatively obtain three-dimensional maps of tumor pO₂. The paramagnetic tracer triarylmethyl (TAM), a substituted trityl radical moiety, is not toxic to animals and provides narrow isotropic spectra, which is ideal for in vivo EPR imaging experiments. From the oxygen-induced spectral broadening of TAM, pO₂ maps can be derived using EPRI.

View Article and Find Full Text PDF

Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO(2) values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO(2) map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions.

View Article and Find Full Text PDF

MRI using hyperpolarized (13) C-labeled pyruvate is a promising tool to biochemically profile tumors and monitor their response to therapy. This technique requires injection of pyruvate into tumor-bearing animals. Pyruvate is an endogenous entity but the influence of exogenously injected bolus doses of pyruvate on tumor microenvironment is not well understood.

View Article and Find Full Text PDF

Structural and functional abnormalities in tumor blood vessels impact the delivery of oxygen and nutrients to solid tumors, resulting in chronic and cycling hypoxia. Although chronically hypoxic regions exhibit treatment resistance, more recently it has been shown that cycling hypoxic regions acquire prosurvival pathways. Angiogenesis inhibitors have been shown to transiently normalize the tumor vasculatures and enhance tumor response to treatments.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) oximetry at 700 MHz operating frequency employing a surface coil resonator is used to assess tissue partial pressure of oxygen (pO(2)) using paramagnetic media whose linewidth and decay constant are related to oxygen concentration. Differences in extracellular and intracellular pO(2) in squamous cell carcinoma (SCC) tumor tissue were tested using several types of water-soluble paramagnetic media, which localize extracellularly or permeate through the cell membrane. The nitroxide carboxy-PROXYL (CxP) can only be distributed in blood plasma and extracellular fluids whereas the nitroxides carbamoyl-PROXYL (CmP) and TEMPOL (TPL) can permeate cell membranes and localize intracellularly.

View Article and Find Full Text PDF

Tumors exhibit fluctuations in blood flow that influence oxygen concentrations and therapeutic resistance. To assist therapeutic planning and improve prognosis, noninvasive dynamic imaging of spatial and temporal variations in oxygen partial pressure (pO(2)) would be useful. Here, we illustrate the use of pulsed electron paramagnetic resonance imaging (EPRI) as a novel imaging method to directly monitor fluctuations in oxygen concentrations in mouse models.

View Article and Find Full Text PDF

Architectural and functional abnormalities of blood vessels are a common feature in tumors. A consequence of increased vascular permeability and concomitant aberrant blood flow is poor delivery of oxygen and drugs, which is associated with treatment resistance. In the present study, we describe a strategy to simultaneously visualize tissue oxygen concentration and microvascular permeability by using a hyperpolarized (1)H-MRI, known as Overhauser enhanced MRI (OMRI), and an oxygen-sensitive contrast agent OX63.

View Article and Find Full Text PDF