Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds < 1 mm s; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds = 10-10 m s and identified two regimes corresponding to two different physical origins of droplet friction.
View Article and Find Full Text PDFRecently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g.
View Article and Find Full Text PDFCavitation refers to the formation and collapse of vapor bubbles near solid boundaries in high-speed flows, such as ship propellers and pumps. During this process, cavitation bubbles focus fluid energy on the solid surface by forming high-speed jets, leading to damage and downtime of machinery. In response, numerous surface treatments to counteract this effect have been explored, including perfluorinated coatings and surface hardening, but they all succumb to cavitation erosion eventually.
View Article and Find Full Text PDFDesalination through direct contact membrane distillation (DCMD) exploits water-repellent membranes to robustly separate counterflowing streams of hot and salty seawater from cold and pure water, thus allowing only pure water vapor to pass through. To achieve this feat, commercial DCMD membranes are derived from or coated with water-repellent perfluorocarbons such as polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF). However, the use of perfluorocarbons is limiting due to their high cost, non-biodegradability, and vulnerability to harsh operational conditions.
View Article and Find Full Text PDFWe present microfabrication protocols for rendering intrinsically wetting materials repellent to liquids (omniphobic) by creating gas-entrapping microtextures (GEMs) on them comprising cavities and pillars with reentrant and doubly reentrant features. Specifically, we use SiO2/Si as the model system and share protocols for two-dimensional (2D) designing, photolithography, isotropic/anisotropic etching techniques, thermal oxide growth, piranha cleaning, and storage towards achieving those microtextures. Even though the conventional wisdom indicates that roughening intrinsically wetting surfaces (θo < 90°) renders them even more wetting (θr < θo < 90°), GEMs demonstrate liquid repellence despite the intrinsic wettability of the substrate.
View Article and Find Full Text PDFHypothesis: Coating-free approaches to achieve liquid repellent, or omniphobic, surfaces could exploit inexpensive intrinsically wetting materials, such as polyethylene terephthalate and nylon, for applications such as liquid-vapor extraction and drag reduction. However, it is not clear whether the existing criteria for assessing coating-based omniphobicity, based on contact angles, would be reliable for coating-free approaches, especially considering localized defects/damages during manufacturing and usage.
Experiments: We assessed the omniphobicity of silica surfaces adorned with arrays of doubly reentrant pillars, cavities, and hybrid designs with sessile drops and on immersion in water and hexadecane through contact angle goniometry and confocal microscopy.
Hypothesis: Direct contact membrane distillation (DCMD) processes exploit water-repellant membranes to desalt warm seawaters by allowing only water vapor to transport across. While perfluorinated membranes/coatings are routinely used for DCMD, their vulnerability to abrasion, heat, and harsh chemicals necessitates alternatives, such as ceramics. Herein, we systematically assess the potential of ceramic membranes consisting of anodized aluminum oxide (AAO) for DCMD.
View Article and Find Full Text PDFTrapping air at the solid-liquid interface is a promising strategy for reducing frictional drag and desalting water, although it has thus far remained unachievable without perfluorinated coatings. Here, we report on biomimetic microtextures composed of doubly reentrant cavities (DRCs) and reentrant cavities (RCs) that can enable even intrinsically wetting materials to entrap air for long periods upon immersion in liquids. Using SiO/Si wafers as the model system, we demonstrate that while the air entrapped in simple cylindrical cavities immersed in hexadecane is lost after 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2017
Omniphobic surfaces, that is, which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact and preventing applications in harsh environments. Thus, there is a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nanotexturing rather than via chemical makeup, with notable success having been achieved for silica surfaces with doubly reentrant micropillars.
View Article and Find Full Text PDF