Publications by authors named "Sankar Renu"

Article Synopsis
  • This study explored how different gut microbiota from rural and urban infants affect immune responses in the respiratory tract of gnotobiotic piglets infected with H1N1 influenza virus.
  • Piglets with urban infant fecal microbiota showed higher viral loads in the upper respiratory tract, while both groups had similar virus-specific antibody responses, indicating a complex interaction between gut bacteria and immune response.
  • The research highlighted distinct immune regulation patterns and changes in gut microbiota following influenza infection in piglets, suggesting that different microbiota can influence respiratory health and may help in developing new therapies.
View Article and Find Full Text PDF

Non-typhoidal Salmonella infection is a significant health and economic burden in poultry industry. Developing an oral vaccine to induce robust mucosal immunity in the intestines of birds, especially cross protection against different Salmonella serotypes is challenging. Therefore, a potent oral vaccine platform that can mitigate different serotypes of Salmonella is warranted for the poultry industry.

View Article and Find Full Text PDF

We developed a novel intranasal SARS-CoV-2 subunit vaccine called NARUVAX-C19/Nano based on the spike protein receptor-binding domain (RBD) entrapped in mannose-conjugated chitosan nanoparticles (NP). A toll-like receptor 9 agonist, CpG55.2, was also added as an adjuvant to see if this would potentiate the cellular immune response to the NP vaccine.

View Article and Find Full Text PDF

The performance of enzyme-linked immunoassays is directly dependent on the storage, handling, and long-term stability of the critical reagents used in the assay. Currently, antibody reagents are routinely stored as concentrated, multi-use, frozen aliquots. This practice results in material waste, adds complexity to laboratory workflows, and can compromise reagents via cross-contamination and freeze-thaw damage.

View Article and Find Full Text PDF

RNA is a fundamental tool for molecular and cellular biology research. The recent COVID-19 pandemic has proved it is also invaluable in vaccine development. However, the need for cold storage to maintain RNA integrity and the practical and economic burden associated with cold chain logistics highlight the need for new and improved preservation methods.

View Article and Find Full Text PDF

The impact of obesity on the human microbiota, immune maturation, and influenza virus infection has not been yet established in natural host animal models of influenza. In this study, gnotobiotic (Gn) pigs were colonized with human fecal microbiota (HFM) of obese (oHFM) or healthy lean (hHFM) children and infected at different periods (2-, 3-, and 5-weeks post-transplantation) using a zoonotic influenza virus strain. The infected oHFM pigs were characterized by lower levels of Firmicutes (, and Streptococcus) and Actinobacteria (), which was associated with higher levels of Proteobacteria (Klebsiella), Bacteroidetes, and Verrucomicrobia () compared with the infected hHFM group ( < 0.

View Article and Find Full Text PDF

Wormwood () pollen is among the top 10 aeroallergens globally that cause allergic rhinitis and bronchial asthma. Allergen-specific immunotherapy (ASIT) is the gold standard for treating patients with allergic rhinitis, conjunctivitis, and asthma. A significant disadvantage of today's ASIT methods is the long duration of therapy and multiplicity of allergen administrations.

View Article and Find Full Text PDF

Capillary-mediated vitrification (CMV) is a novel method for stabilizing biological molecules and complexes. CMV leverages capillary evaporation to enable rapid desiccation of aqueous solutions while avoiding both freezing and boiling. In the CMV process, an aqueous solution containing the biological material of interest and common excipients is applied to a solid, porous support, referred to as the scaffold, and desiccated under vacuum.

View Article and Find Full Text PDF

Bioinspired and biomimetic micro- and nanostructures have a high significance in the field of biomedicine. In this review, the possible applications of these micro- and nanostructures that come across in our daily life and inspired by nature itself are presented. Also, the biomimetic and bioinspired systems related to micro- and nanostructures in biomedicine are also described.

View Article and Find Full Text PDF

Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S.

View Article and Find Full Text PDF

This work discusses the present-day limitations of current commercial vaccines for broilers and layers and explores a novel approach towards poultry vaccination using biodegradable nanoparticle vaccines against . With the increasing global population and poultry production and consumption, is a potential health risk for humans. The oral administration of killed or inactivated vaccines would provide a better alternative to the currently commercially available vaccines for poultry.

View Article and Find Full Text PDF
Article Synopsis
  • - This study assessed the effectiveness of an in-ovo Salmonella chitosan-nanoparticle vaccine in broiler chickens, showing that it can boost immune response but not necessarily improve growth or feed efficiency compared to control groups.
  • - The CNP-vaccinated birds displayed a significant increase in anti-Salmonella antibodies shortly after vaccination and during the initial challenge, indicating a strong early immune response.
  • - Although the vaccine successfully reduced Salmonella load in the ceca of chicks at later stages, it did not significantly alter T-cell ratios or inflammatory marker levels compared to unvaccinated controls.
View Article and Find Full Text PDF

Parenteral administration of killed/inactivated swine influenza A virus (SwIAV) vaccine in weaned piglets provides variable levels of immunity due to the presence of preexisting virus specific maternal derived antibodies (MDA). To overcome the effect of MDA on SwIAV vaccine in piglets, we developed an intranasal deliverable killed SwIAV antigen (KAg) encapsulated chitosan nanoparticles called chitosan-based NPs encapsulating KAg (CS NPs-KAg) vaccine. Further, to target the candidate vaccine to dendritic cells and macrophages which express mannose receptor, we conjugated mannose to chitosan (mCS) and formulated KAg encapsulated mCS nanoparticles called mannosylated chitosan-based NPs encapsulating KAg (mCS NPs-KAg) vaccine.

View Article and Find Full Text PDF

We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ&TNFα, IL-17A and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ and IFNγ&TNFα, and H1N1-specific IL-17A T-helper/Memory cells were observed.

View Article and Find Full Text PDF

Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased.

View Article and Find Full Text PDF

Infectious disease of poultry and pig are major threat to health and cause severe economic loss to the food industry and a global food safety issue. Poultry and pig act as a mixing vessel of zoonotic transmission of disease to humans. Effective mucosal vaccines used in animals could reduce the impact of diseases in food animals.

View Article and Find Full Text PDF

Neurodegenerative disorders and brain tumors are major pathological conditions affecting the brain. The delivery of therapeutic agents into the brain is not as easy as to other organs or systems. The presence of the blood-brain barrier (BBB) makes the drug delivery into the brain more complicated and challenging.

View Article and Find Full Text PDF

Controlling serovar Enteritidis (SE) infection in broilers is a huge challenge. In this study, our objective was to improve the efficacy of a chitosan nanoparticle (CS)-based subunit vaccine for SE, containing immunogenic outer membrane proteins (OMP) and flagellin (FLA), called the CS(OMP+FLA) vaccine, by surface conjugating it with mannose to target dendritic cells, and comparing the immune responses and efficacy with a commercial live vaccine in broilers. The CS(OMP+FLA)-based vaccines were administered orally at age 3 days and as a booster dose after three weeks, and the broilers were challenged with SE at 5 weeks of age.

View Article and Find Full Text PDF

Poor induction of mucosal immunity in the intestines by current Salmonella vaccines is a challenge to the poultry industry. We prepared and tested an oral deliverable Salmonella subunit vaccine containing immunogenic outer membrane proteins (OMPs) and flagellin (F) protein loaded and F-protein surface coated chitosan nanoparticles (CS NPs) (OMPs-F-CS NPs). The OMPs-F-CS NPs had mean particle size distribution of 514 nm, high positive charge and spherical in shape.

View Article and Find Full Text PDF

serovar Enteritidis (. Enteritidis, SE) infection in broilers causes a huge economic loss and public health risk. We previously demonstrated that orally delivered chitosan based (CS) subunit nanoparticle (NP) vaccine containing immunogenic outer membrane proteins (OMP) and flagellin (FLA) of SE [CS-NP(OMP+FLA)] induces immune response in broilers.

View Article and Find Full Text PDF

Intranasal vaccination elicits secretory IgA (SIgA) antibodies in the airways, which is required for cross-protection against influenza. To enhance the breadth of immunity induced by a killed swine influenza virus antigen (KAg) or conserved T cell and B cell peptides, we adsorbed the antigens together with the TLR3 agonist poly(I:C) electrostatically onto cationic alpha-D-glucan nanoparticles (Nano-11) resulting in Nano-11-KAg-poly(I:C) and Nano-11-peptides-poly(I:C) vaccines. In vitro, increased TNF-α and IL-1ß cytokine mRNA expression was observed in Nano-11-KAg-poly(I:C)-treated porcine monocyte-derived dendritic cells.

View Article and Find Full Text PDF

There are currently no licensed vaccines against Clostridium perfringens which causes necrotic enteritis in poultry. Chitosan nanoparticles were formulated with native (CN) or toxoids (CT) of extracellular proteins (ECP) of C. perfringens, both surface-tagged with Salmonella flagellar proteins.

View Article and Find Full Text PDF

Two experiments were conducted to evaluate the immune response of broilers vaccinated with Salmonella chitosan-nanoparticle (CNP) vaccine and challenged with Salmonella. The Salmonella CNP vaccine was synthesized with Salmonella enterica outer membrane proteins (OMPs) and flagellin proteins. In Experiment I, birds were orally gavaged with PBS or 500, 1000, or 2000μg of CNP vaccine 1 and 7d-of-age.

View Article and Find Full Text PDF