There is a pressing need for new therapeutics to reactivate covalently inactivated acetylcholinesterase (AChE) due to exposure to organophosphorus (OP) compounds. Current reactivation therapeutics (RTs) are not broad-spectrum and suffer from other liabilities, specifically the inability to cross the blood-brain-barrier. Additionally, the chemical diversity of available therapeutics is small, limiting opportunities for structure-activity relationship (SAR) studies to aid in the design of more effective compounds.
View Article and Find Full Text PDFWith the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure-function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.
View Article and Find Full Text PDFLigand virtual screening (VS) using the vestibular binding pocket of a 3-D monoamine transporter (MAT) computational model followed by in vitro pharmacology led to the identification of a human serotonin transporter (hSERT) inhibitor with modest affinity (hSERT K(i) = 284 nM). Structural comparison of this VS-elucidated compound, denoted MI-17, to known SERT ligands led to the rational design and synthesis of DJLDU-3-79, a molecular hybrid of MI-17 and dual SERT/5-HT(1A) receptor antagonist SSA-426. Relative to MI-17, DJLDU-3-79 displayed 7-fold improvement in hSERT binding affinity and a 3-fold increase in [(3)H]-serotonin uptake inhibition potency at hSERT/HEK cells.
View Article and Find Full Text PDFThe serotonin transporter (SERT), a member of the neurotransmitter sodium symporter (NSS) family, is responsible for the reuptake of serotonin from the synaptic cleft to maintain neurotransmitter homeostasis. SERT is established as an important target in the treatment of anxiety and depression. Because a high-resolution crystal structure is not available, a computational model of SERT was built based upon the X-ray coordinates of the leucine transporter LeuT, a bacterial NSS homologue.
View Article and Find Full Text PDF