Ocular imaging instruments, such as Confocal Scanning Laser Ophthalmoscopy (CSLO), captures high-quality images of the optic disc (also known as optic nerve head) that help clinicians to diagnose glaucoma. We present an integrated data analytics framework to aid clinicians in interpreting CSLO optic nerve images to diagnose and monitor the progression of glaucoma. To distinguish between healthy and glaucomatous optic discs, our framework derives shape information from CSLO images using image processing (Zernike moment method), selects salient features (hybrid feature selection), and then trains image classifiers (Multilayer Perceptron, Support Vector Machine, Bayesian Network).
View Article and Find Full Text PDFStud Health Technol Inform
April 2016
We present a data mining framework to cluster optic nerve images obtained by Confocal Scanning Laser Tomography (CSLT) in normal subjects and patients with glaucoma. We use self-organizing maps and expectation maximization methods to partition the data into clusters that provide insights into potential sub-classification of glaucoma based on morphological features. We conclude that our approach provides a first step towards a better understanding of morphological features in optic nerve images obtained from glaucoma patients and healthy controls.
View Article and Find Full Text PDF