Publications by authors named "Sanjukta Subudhi"

The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency.

View Article and Find Full Text PDF

The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g.

View Article and Find Full Text PDF

Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products.

View Article and Find Full Text PDF

Still, in the current period, non-renewable energy sources have contributed to fulfill the current energy requirement and it causes the deficit of available stocks with emission of pollutant byproducts components. In recent years, efforts were made to harness the sustainable/ renewable fuels from renewable sources/ waste, complex organic matters including biomass at global level. Researchers have put attention on harnessing energy from wastewater and MFCs systems.

View Article and Find Full Text PDF

Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed.

View Article and Find Full Text PDF

The major global concern on energy is focused on conventional fossil resources. The burning of fossil fuels is an origin of greenhouse gas emissions resulting in the utmost threat to the environment and subsequently which leads to global climate changes. As far as sustainability is concerned, fuels and materials derived from organic or plant wastes overcome this downside establishing the solution to the fossil resource crisis.

View Article and Find Full Text PDF

Gut microbes play prime role in human health and have shown to exert their influence on various physiological responses including neurological functions. Growing evidences in recent years have indicated a key role of gut microbiota in contributing to mental health. The connection between gut and brain is modulated by microbes via neural, neuroendocrinal and metabolic pathways that are mediated through various neurotransmitters and their precursors, hormones, cytokines and bioactive metabolites.

View Article and Find Full Text PDF

The aquatic plants, , and , were used as complementing phytoremediators of wastewater containing high levels of phosphate, which simulates the effluents from textile, dyeing, and laundry detergent industries. Their complementarities are based on differences in capacities to uptake nitrogen and phosphate components from wastewater. Sequential treatment by followed by led to complete removal of NH, NO, and up to 93% reduction of PO.

View Article and Find Full Text PDF

The applicability of compound-specific isotope analysis (CSIA) for assessing in situ hydrolysis of parathion was investigated in a contaminated aquifer at a former pesticide wastes landfill site. Stable isotope analysis of parathion extracted from groundwater taken from different monitoring wells revealed a maximum enrichment in carbon isotope ratio of +4.9‰ compared to the source of parathion, providing evidence that in situ hydrolysis took place.

View Article and Find Full Text PDF

The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.

View Article and Find Full Text PDF

Methane production in the upflow anaerobic bioelectrochemical reactor (UABE) treating acidic distillery wastewater was compared to the upflow anaerobic sludge blanket reactor (UASB), and the electron transfer pathways for methane production were also evaluated in the effluent recirculation. The methane productions from reactors were influenced by the low pH of influent wastewater. However, the methane production rate and yield of the UABE were 2.

View Article and Find Full Text PDF

Background: Microalgae have shown clear advantages for the production of biofuels compared with energy crops. Apart from their high growth rates and substantial lipid/triacylglycerol yields, microalgae can grow in wastewaters (animal, municipal and mining wastewaters) efficiently removing their primary nutrients (C, N, and P), heavy metals and micropollutants, and they do not compete with crops for arable lands. However, fundamental barriers to the industrial application of microalgae for biofuel production still include high costs of removing the algae from the water and the water from the algae which can account for up to 30-40% of the total cost of biodiesel production.

View Article and Find Full Text PDF

A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of -hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%.

View Article and Find Full Text PDF

Background: The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems.

View Article and Find Full Text PDF

The influence of electrode surface chemistry over biofilm growth was evaluated for photo-bioelectrocatalytic fuel cell. A consortium of photosynthetic bacteria was grown onto different electrodes designed with polyethylenimine (PEI) and multiwall carbon nanotubes as hydrophilic and hydrophobic modifier, respectively. The designed electrodes were loaded with 0.

View Article and Find Full Text PDF

Optimization of process parameters enhanced bioflocculating activity of 'Achromobacter xylosoxidans strain TERI L1' from 75% to 83.3% in absence of heavy metals, which decreased to 73% in presence of multi-metals. 'TERI L1' could adsorb 90% of multi-metals when grown in presence of 1250 mg L(-1) Zn, 2 mg L(-1) Cd, 30 mg L(-1) Pb, 200 mg L(-1) Ni and 90 mg L(-1) Cu and could adsorb 1100 mg L(-1) of Pb when grown in presence of 1500 ppm lead nitrate.

View Article and Find Full Text PDF

Electrode materials play a vital role in biofilm formation and electron conduction for efficient functioning of fuel cells. In the present study, graphite polymer composite electrode (GPF) was evaluated as anode for photo-bioelectrocatalytic fuel cell (PhFC; biophotovoltaic system) and compared with much studied graphite electrode (Gc) with photosynthetic bacteria as biocatalyst under anoxygenic condition. The electrogenic activity noticed in GPF (584mV; 2.

View Article and Find Full Text PDF

A bioflocculant-producing bacterial isolate designated as 'TERI-IASST N' was isolated from activated sludge samples collected from an oil refinery. This isolate demonstrated maximum bioflocculation activity (74%) from glucose among 15 different bioflocculant-producing bacterial strains isolated from the sludge samples and identified as Achromobacter sp. based on 16S rRNA gene sequence.

View Article and Find Full Text PDF

Lead is one of the four heavy metals that has a profound damaging effects on human health. In the recent past there has been an increasing global concern for development of sustainable bioremediation technologies for detoxification of lead contaminant. Present investigation highlights for lead biosorption by a newly isolated novel bacterial species; Achromobacter sp.

View Article and Find Full Text PDF

Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A.

View Article and Find Full Text PDF

The results of our previous study on heterologous expression in Escherichia coli of the gene desD, which encodes Spirulina Delta(6) desaturase, showed that co-expression with an immediate electron donor-either cytochrome b ( 5 ) or ferredoxin-was required for the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6) desaturase. Since a system for stable transformation of Spirulina is not available, studies concerning Spirulina-enzyme characterization have been carried out in heterologous hosts. In this present study, the focus is on the role of the enzyme's N- and C-termini, which are possibly located in the cytoplasmic phase.

View Article and Find Full Text PDF

Delta6-Desaturase (D6D) is a key enzyme that catalyzes the synthesis of gamma-linolenic acid (GLA), an essential polyunsaturated fatty acid. We report here the isolation and first functional characterization of the D6D gene promoter from Spirulina platensis C1. Functional analysis of this isolated promoter showed that the Spirulina promoter was functional in Escherichia coli.

View Article and Find Full Text PDF

When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.

View Article and Find Full Text PDF

Spirulina-acyl-lipid desaturases are integral membrane proteins found in thylakoid and plasma membranes. These enzymes catalyze the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. It has been reported that the cyanobacterial desaturases use ferredoxin as an electron donor, whereas the acyl-lipid desaturase in plant cytoplasm and the acyl-CoA desaturase of animals and fungi use cytochrome b (5).

View Article and Find Full Text PDF

Spirulina-acyl-lipid desaturases are membrane-bound enzymes found in thylakoid and plasma membranes. These enzymes carry out the fatty acid desaturation process of Spirulina to yield gamma-linolenic acid (GLA) as the final desaturation product. In this study, Spirulina-Delta(6) desaturase encoded by the desD gene was heterologously expressed and characterized in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionerievbl7q9eh8navgmi4e4uqnrh6c9m7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once