Publications by authors named "Sanjuan M"

Article Synopsis
  • Neogene volcanism in southeastern Iberian Peninsula led to the formation of volcanic structures and accumulated pyroclastic materials, resulting in the unique zeolite deposit around San José-Los Escullos.
  • The research aimed to characterize this natural zeolite (SZ) for its mineral, chemical, and technical properties, assessing its potential use as a natural pozzolan, particularly in cement mixtures.
  • Analysis methods included XRD, SEM, XRF, and TGA, confirming the presence of reactive minerals and demonstrating that the zeolite samples exhibited good quality pozzolanic reactivity over time.
View Article and Find Full Text PDF

Elementary cellular automata are the simplest form of cellular automata, studied extensively by Wolfram in the 1980s. He discovered complex behavior in some of these automata and developed a classification for all cellular automata based on their phenomenology. In this paper, we present an algorithm to classify them more effectively by measuring difference patterns using the Hamming distance.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates using density functional theory (DFT) to design biodegradable hydrogels for capturing carbon dioxide (CO) to reduce greenhouse gas emissions.
  • The research identifies four hydrogel models—polyethylene glycol, polyvinylpyrrolidone, chitosan, and poly-2-hydroxymethacrylate—that show strong binding affinities to CO, with binding energies indicating physisorption.
  • Findings suggest that these materials are stable at high temperatures and highlight the potential for developing new CO capture technologies, although further optimization and environmental performance assessments are needed.
View Article and Find Full Text PDF

Ternary blended cements, made with silica fume and limestone, provide significant benefits such as improved compressive strength, chloride penetration resistance, sulfates attack, etc. Furthermore, they could be considered low-carbon cements, and they contribute to reducing the depletion of natural resources in reference to water usage, fossil fuel consumption, and mining. Limestone (10%, 15%, and 20%) with different fineness and coarse silica fume (3%, 5%, and 7%) was used to produce ternary cements.

View Article and Find Full Text PDF

The co-processing of different wastes as fuels in the manufacture of cement clinker not only meets the objectives of a circular economy but also contributes to the reduction in CO emissions in the manufacture of Portland cement. However, waste used as alternative fuels, such as sludge or organic-rich residues, may contain naturally occurring radionuclides that can be concentrated during the combustion process. In this study, the presence of natural radionuclides (radioactive series of uranium, thorium, and K) and anthropogenic radionuclides (Cs) in these wastes has been investigated by gamma spectrometry.

View Article and Find Full Text PDF

In this paper we study different types of phase space structures which appear in the context of relativistic chaotic scattering. By using the relativistic version of the Hénon-Heiles Hamiltonian, we numerically study the topology of different kind of exit basins and compare it with the case of low velocities in which the Newtonian version of the system is valid. Specifically, we numerically study the escapes in the phase space, in the energy plane, and in the β plane, which richly characterize the dynamics of the system.

View Article and Find Full Text PDF

The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed.

View Article and Find Full Text PDF

This research addresses the challenge of characterizing the complexity and unpredictability of basins within various dynamical systems. The main focus is on demonstrating the efficiency of convolutional neural networks (CNNs) in this field. Conventional methods become computationally demanding when analyzing multiple basins of attraction across different parameters of dynamical systems.

View Article and Find Full Text PDF

Aims/hypothesis: Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines.

View Article and Find Full Text PDF

From a context of evolutionary dynamics, social games can be studied as complex systems that may converge to a Nash equilibrium. Nonetheless, they can behave in an unpredictable manner when looking at the spatial patterns formed by the agents' strategies. This is known in the literature as spatial chaos.

View Article and Find Full Text PDF

The Intergovernmental Panel on Climate Change (IPCC), which is the United Nations body for assessing the science related to climate change, has recently recognized the natural carbonation process as a way of carbon offsetting with mortar and concrete. Accordingly, this activity could be recognized as a carbon removal process for which certification should be granted. The aim of the certification of carbon removal is to promote the development of adequate and efficient new carbon removal processes.

View Article and Find Full Text PDF

During recent decades active particles have attracted an incipient attention as they have been observed in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations amplitude and characteristic frequency of the steady state for different values of the time delay and the driving force.

View Article and Find Full Text PDF

Currently, urine samples for bacterial or fungal infections require a long diagnostic period (48 h). In the present work, a point-of-care device known as an electronic nose (eNose) has been designed based on the "smell print" of infections, since each one emits various volatile organic compounds (VOC) that can be registered by the electronic systems of the device and recognized in a very short time. Urine samples were analyzed in parallel using urine culture and eNose technology.

View Article and Find Full Text PDF

We have found two kinds of ultrasensitive vibrational resonance in coupled nonlinear systems. It is particularly worth pointing out that this ultrasensitive vibrational resonance is transient behavior caused by transient chaos. Considering a long-term response, the system will transform from transient chaos to a periodic response.

View Article and Find Full Text PDF

We explore the effect of some simple perturbations on three nonlinear models proposed to describe large-scale solar behavior via the solar dynamo theory: the Lorenz and Rikitake systems and a Van der Pol-Duffing oscillator. Planetary magnetic fields affecting the solar dynamo activity have been simulated by using harmonic perturbations. These perturbations introduce cycle intermittency and amplitude irregularities revealed by the frequency spectra of the nonlinear signals.

View Article and Find Full Text PDF

Objectives: To determine the influence of different surface roughness and residual stress of hybrid surface implants on their behavior and mechanical failure.

Methods: Three types of implants with different surface roughness were used as specimens: smooth, rough, and hybrid. A diffractometer was used to determine the residual stress of the implants according to their different surface treatment.

View Article and Find Full Text PDF

A variation in the environment of a system, such as the temperature, the concentration of a chemical solution, or the appearance of a magnetic field, may lead to a drift in one of the parameters. If the parameter crosses a bifurcation point, the system can tip from one attractor to another (bifurcation-induced tipping). Typically, this stability exchange occurs at a parameter value beyond the bifurcation value.

View Article and Find Full Text PDF

In this paper, we show that the destruction of the main Kolmogorov-Arnold-Moser (KAM) islands in two-degree-of-freedom Hamiltonian systems occurs through a cascade of period-doubling bifurcations. We calculate the corresponding Feigenbaum constant and the accumulation point of the period-doubling sequence. By means of a systematic grid search on exit basin diagrams, we find the existence of numerous very small KAM islands ("islets") for values below and above the aforementioned accumulation point.

View Article and Find Full Text PDF

The object of this work is to study and characterize diatomites from the southeast of the Iberian Peninsula to establish their character and quality as natural pozzolans. This research carried out a morphological and chemical characterization study of the samples using SEM and XRF. Subsequently, the physical properties of the samples were determined, including thermic treatment, Blaine particle finesse, real density and apparent density, porosity, volume stability, and the initial and final setting times.

View Article and Find Full Text PDF

Objective: Transcript and protein expression were interrogated to examine gene locus and pathway regulation in the peripheral blood of active adult dermatomyositis (DM) and juvenile DM patients receiving immunosuppressive therapies.

Methods: Expression data from 14 DM and 12 juvenile DM patients were compared to matched healthy controls. Regulatory effects at the transcript and protein level were analyzed by multi-enrichment analysis for assessment of affected pathways within DM and juvenile DM.

View Article and Find Full Text PDF

The speed at which climate change is happening is leading to a demand for new pozzolanic materials that improve the quality of cements and, at the same time, limit the emission of greenhouse gases into the atmosphere. The main objective of this work is the detailed characterization of an ignimbrite sample (IGNS) to demonstrate its effectiveness as a natural pozzolan. To meet this objective, a series of tests were carried out.

View Article and Find Full Text PDF

Ternary Portland cement usage with a high amount of cement constituents different from clinker can afford great climate change advantages by lowering the Portland cement clinker content in the final product. This will contribute to cutting greenhouse gas emissions to close to zero by 2050. Such ternary Portland cements can be composed of different amounts of ground granulated blast-furnace slag (GBFS), coal fly ash (CFA), and clinker (K).

View Article and Find Full Text PDF

We investigate the possibility of avoiding the escape of chaotic scattering trajectories in two-degree-of-freedom Hamiltonian systems. We develop a continuous control technique based on the introduction of coupling forces between the chaotic trajectories and some periodic orbits of the system. The main results are shown through numerical simulations, which confirm that all trajectories starting near the stable manifold of the chaotic saddle can be controlled.

View Article and Find Full Text PDF

A current challenge regarding microfluidic paper-based analytical devices (µPAD) for blood plasma separation (BPS) and electrochemical immunodetection of protein biomarkers is how to achieve a µPAD that yields enough plasma to retain the biomarker for affinity biosensing in a functionalized electrode system. This paper describes the development of a BPS µPAD to detect and quantify the S100B biomarker from peripheral whole blood. The device uses NaCl functionalized VF2 filter paper as a sample collection pad, an MF1 filter paper for plasma retention, and an optimized microfluidic channel geometry.

View Article and Find Full Text PDF