Phys Rev E Stat Nonlin Soft Matter Phys
October 2014
We determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows of energy, entropy, and information inside the demon.
View Article and Find Full Text PDFThis paper provides a framework for generating high resolution time sequences of 3D images that show the dynamics of cerebral blood flow. These sequences have the potential to allow image feedback during medical procedures that facilitate the detection and observation of pathological abnormalities such as stenoses, aneurysms, and blood clots. The 3D time series is constructed by fusing a single static 3D model with two time sequences of 2D projections of the same imaged region.
View Article and Find Full Text PDFBrain-driven interfaces depend on estimation procedures to convert neural signals to inputs for prosthetic devices that can assist individuals with severe motor deficits. Previous estimation procedures were developed on an application-specific basis. Here we report a coherent estimation framework that unifies these procedures and motivates new applications of prosthetic devices driven by action potentials, local field potentials (LFPs), electrocorticography (ECoG), electroencephalography (EEG), electromyography (EMG), or optical methods.
View Article and Find Full Text PDF