Publications by authors named "Sanjoy K Mahatha"

The quest for intrinsically ferromagnetic topological materials is a focal point in the study of topological phases of matter, as intrinsic ferromagnetism plays a vital role in realizing exotic properties such as the anomalous Hall effect (AHE) in quasi-two-dimensional materials, and this stands out as one of the most pressing concerns within the field. Here, we investigate a novel higher order member of the MnSb2nTe3n+1family, MnSbTe, for the first time combining magnetotransport and angle-resolved photoemission spectroscopy (ARPES) measurements. Our magnetic susceptibility experiments identify ferromagnetic transitions at temperature= 18.

View Article and Find Full Text PDF

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level.

View Article and Find Full Text PDF

Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic.

View Article and Find Full Text PDF

We propose SnBiTeto be a novel topological quantum material exhibiting temperature () mediated transitions between rich electronic phases. Our combined theoretical and experimental results suggest that SnBiTegoes from a low-semimetallic phase to a high-(room temperature) insulating phase via an intermediate metallic phase. Single crystals of SnBiTeare characterized by various experimental probes including synchrotron based x-ray diffraction, magnetoresistance, Hall effect, Seebeck coefficient and magnetization.

View Article and Find Full Text PDF

The magnetic properties of transition-metal ions are generally described by the atomic spins of the ions and their exchange coupling. The orbital moment, usually largely quenched due the ligand field, is then seen as a perturbation. In such a scheme, = 1/2 ions are predicted to be isotropic.

View Article and Find Full Text PDF

We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy.

View Article and Find Full Text PDF

Materials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties.

View Article and Find Full Text PDF

In this work we prove that ordered single-layer MoS can be grown epitaxially on Ag(110), despite the different crystalline geometry of adsorbate and substrate. A comprehensive investigation of electronic and structural features of this interface is carried out by combining several techniques. Photoelectron diffraction experiments show that only two mirror crystalline domains coexist in equal amount in the grown layer.

View Article and Find Full Text PDF

Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn, ZrSiS, TlTaSe and PbTaSe.

View Article and Find Full Text PDF

Silicene, a honeycomb lattice of silicon, presents a particular case of allotropism on Ag(111). Silicene forms multiple structures with alike in-plane geometry but different out-of-plane atomic buckling and registry to the substrate. Angle-resolved photoemission and first-principles calculations show that these silicene structures, with (4×4), (√13×√13)R13.

View Article and Find Full Text PDF
Article Synopsis
  • The electronic band structure of the three-dimensional PbBi6Te10 topological insulator is explored using angle-resolved photoemission spectroscopy (ARPES) measurements.
  • The study identifies multiple Dirac surface states with unique electronic properties, including different energy contours and energies at the Dirac point.
  • The findings align with scanning tunneling microscopy data and density functional theory calculations, indicating varying surface terminations and multiple topological surface states depending on the crystal cleavage planes.
View Article and Find Full Text PDF

We report on the magnetic coupling between isolated Co atoms as well as small Co islands and Ni(111) mediated by an epitaxial graphene layer. X-ray magnetic circular dichroism and scanning tunneling microscopy combined with density functional theory calculations reveal that Co atoms occupy two distinct adsorption sites, with different magnetic coupling to the underlying Ni(111) surface. We further report a transition from an antiferromagnetic to a ferromagnetic coupling with increasing Co cluster size.

View Article and Find Full Text PDF