Publications by authors named "Sanjoy Banerjee"

Asphaltenes can cause operational challenges in petroleum production facilities and adversely affect production by adsorption on mineral surfaces and alteration of the oil wettability of reservoirs. Therefore, understanding asphaltene adsorption mechanisms and their effects is crucial to improving the efficiency of oil production and reducing costs. In this study, we focus on understanding the impact of asphaltene concentration and the depositing environment of asphaltene adsorption on solid surfaces using the quartz crystal microbalance with dissipation (QCM-D) technique.

View Article and Find Full Text PDF

Achieving commercially acceptable Zn-MnO rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation MnO or ZnMnO resulting from the uncontrollable reaction of Mn dissolved species with zincate ions.

View Article and Find Full Text PDF

Chlorella is one of the most widely accepted Chlorophyta used by many as livestock and aquaculture feed. Nonetheless, different studies on the overall performances of fish reported the unfavourable effect of high-level supplementations of Chlorella vulgaris. The current study determined the impact of low-level dietary supplementation of C.

View Article and Find Full Text PDF

Zinc (Zn)-anode batteries, although safe and non-flammable, are precluded from promising applications because of their low voltage (<2 V) and poor rechargeability. Here, we report the fabrication of rechargeable membrane-less Zn-anode batteries with high voltage properties (2.5 to 3.

View Article and Find Full Text PDF

Zinc (Zn)-manganese dioxide (MnO) rechargeable batteries have attracted research interest because of high specific theoretical capacity as well as being environmentally friendly, intrinsically safe and low-cost. Liquid electrolytes, such as potassium hydroxide, are historically used in these batteries; however, many failure mechanisms of the Zn-MnO battery chemistry result from the use of liquid electrolytes, including the formation of electrochemically inert phases such as hetaerolite (ZnMnO) and the promotion of shape change of the Zn electrode. This manuscript reports on the fundamental and commercial results of gel electrolytes for use in rechargeable Zn-MnO batteries as an alternative to liquid electrolytes.

View Article and Find Full Text PDF

Removal of nitrogenous and phosphorus compounds from aquaculture wastewater by green microalgae (Tetraselmis sp.) was investigated using a novel method of algal cell immobilization. Immobilized microalgae removed nitrogenous and phosphorous compounds efficiently from aquaculture wastewater.

View Article and Find Full Text PDF

This study was designed to profile the metabolites of , an indigenous and less explored microalgae species. H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS-DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra.

View Article and Find Full Text PDF

The phase behavior and adsorption kinetics of hard-core particles on a honeycomb lattice are studied by means of random sequential adsorption with surface diffusion. We concentrate on reversible adsorption by introducing a desorption process into our previous model and varying the equilibrium rate constant as a control parameter. We find that an exact prediction of the temporal evolution of fractional surface coverage and the surface pressure dynamics of reversible adsorption can be achieved by use of the blocking function of a system with irreversible adsorption of highly mobile particles.

View Article and Find Full Text PDF

The adsorption kinetics and thermodynamic properties of a binary mixture on a square lattice are studied using the random sequential adsorption with surface diffusion (RSAD). We compare the adsorption of binary species with different equilibrium rate constants and effective rates of adsorption to a surface and find that the temporal evolution of surface coverages of both species can be obtained through the use of the blocking function of a system with irreversible adsorption of highly diffusive particles. Binary mixtures, when one of the components follows the random sequential adsorption (RSA) without surface diffusion and the other follows the RSAD model, display competitive adsorption in addition to cooperative phenomena.

View Article and Find Full Text PDF

Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency ( ), pigment contents (chlorophyll , lutein, neoxanthin, and β-carotene), and fatty acids production.

View Article and Find Full Text PDF

Significantly high eicosapentaenoic acid (EPA) and fucoxanthin contents with high production rate were achieved in semi continuous culture of marine diatom. Effects of dilution rate on the production of biomass and high value biocompounds such as EPA and fucoxanthin were evaluated in semi-continuous cultures of under high light condition. Cellular dry weight increased at lower dilution rate and higher light intensity conditions, and cell size strongly affected EPA and fucoxanthin contents.

View Article and Find Full Text PDF

Alkaline zinc-manganese dioxide (Zn-MnO) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)) transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of -butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate.

View Article and Find Full Text PDF

Usage of a face mask has become mandatory in many countries after the outbreak of SARS-CoV-2, and its usefulness in combating the pandemic is a proven fact. There have been many advancements in the design of a face mask and the present treatise describes a face mask in which a simple triboelectric nanogenerator (TENG) with an electrocution layer may serve the purpose of filtration and deactivation of SARS-CoV-2. The proposed mask is designed with multilayer filters, in which the inner three layers act as a triboelectric (TE) filter and the outer one as an electrocution layer (EL).

View Article and Find Full Text PDF

Background And Aim: Malachite green (MG) is an effective antiparasitic and antifungal chemical for treatment of fish. However, MG is reported to be a potential carcinogen. Yet, it is widely used in aquaculture despite its prohibition for use in food-producing animals by the EU and USFDA.

View Article and Find Full Text PDF

The determination of phase behavior and, in particular, the nature of phase transitions in two-dimensional systems is often clouded by finite size effects and by access to the appropriate thermodynamic regime. We address these issues using an alternative route to deriving the equation of state of a two-dimensional hard-core particle system, based on kinetic arguments and the Gibbs adsorption isotherm, by the use of the random sequential adsorption with a surface diffusion model. Insight into coexistence regions and phase transitions is obtained through direct visualization of the system at any fractional surface coverage via local bond orientation order.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of different light sources and media (wastewater and BBM) on the growth of Pseudanabaena mucicola and its phycobiliprotein production. Results showed that P. mucicola grown in white light using wastewater as medium attributed higher biomass (0.

View Article and Find Full Text PDF

Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems.

View Article and Find Full Text PDF

Asphaltenes are a solubility class of crude oils comprising polyaromatic and heterocyclic molecules with different interfacial activities. The previously neglected effects of compositional mixture on dilatational rheology are discussed in the light of diffusional relaxation models. It is demonstrated that the reported deviations from the Lucassen-van den Tempel model for a single-component solution could largely originate from a distribution in adsorption coefficients within the asphaltenes class.

View Article and Find Full Text PDF

The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels.

View Article and Find Full Text PDF

Asphaltenes are "n-alkane insoluble" species in crude oil that stabilize water-in-oil emulsions. To understand asphaltene adsorption mechanisms at oil-water interfaces and coalescence blockage, we first studied the behavior in aliphatic oil-water systems in which asphaltenes are almost insoluble. They adsorbed as monomers, giving a unique master curve relating interfacial tension (IFT) to interfacial coverage through a Langmuir equation of state (EoS).

View Article and Find Full Text PDF

Plants are able to synthesize, store and release lipophilic organic molecules known as plant volatiles (PVs) utilizing specific biological pathways and different enzymes which play vital roles in the plant's defence and in dealing with biotic and abiotic stress situations. The process of generation, storage and release of PVs by plants acquired during the course of evolution is a very complex phenomenon. Bio-inspired molecular design of farnesol-based surfactants facilitates similar production, storage and release of PVs.

View Article and Find Full Text PDF

Microalgae are the major photosynthesizers on earth and produce important pigments that include chlorophyll a, b and c, β-carotene, astaxanthin, xanthophylls, and phycobiliproteins. Presently, synthetic colorants are used in food, cosmetic, nutraceutical, and pharmaceutical industries. However, due to problems associated with the harmful effects of synthetic colorants, exploitation of microalgal pigments as a source of natural colors becomes an attractive option.

View Article and Find Full Text PDF

In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough.

View Article and Find Full Text PDF

Previous studies indicated that asphaltenes adsorbed as monomers on oil-water interfaces and the early stage kinetics of the process was controlled by diffusion and hence dependent on oil viscosity. By measuring interfacial tension (IFT) as a function of surface coverage during droplet expansions in pendant drop experiments, it was also concluded that the IFT data could be interpreted with a Langmuir equation of state (EoS), which was independent of oil viscosity, time of adsorption, and bulk asphaltenes concentration. The surface excess coverage was calculated to be ∼0.

View Article and Find Full Text PDF

In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed.

View Article and Find Full Text PDF