The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal.
View Article and Find Full Text PDFThe increasing energy demands of modern society require a deep understanding of the properties of energy storage materials, as well as the tuning of their performance. We show that the capacitance of graphene oxide (GO) can be precisely tuned using a simple electrochemical reduction route. In situ resistance measurements, in combination with cyclic voltammetry measurements and Raman spectroscopy, have shown that upon reduction GO is irreversibly deoxygenated, which is further accompanied by structural ordering and an increase in electrical conductivity.
View Article and Find Full Text PDFH production via water electrolysis plays an important role in hydrogen economy. Hence, novel cheap electrocatalysts for the hydrogen evolution reaction (HER) are constantly needed. Here, we describe a simple method for the preparation of composite catalysts for H evolution, consisting in simultaneous reduction of the graphene oxide film, and electrochemical deposition of Ni on its surface.
View Article and Find Full Text PDF