ACS Appl Mater Interfaces
September 2019
A method for suppressing impurities in GaN thin films grown via plasma-enhanced atomic deposition (PEALD) through the in situ pretreatment of Si (100) substrate with plasma was developed. This approach leads to a superior GaN/Si (100) interface. After pretreatment, the thickness of the interfacial layer between GaN films and the substrates decreases from 2.
View Article and Find Full Text PDFIII-nitride solid-state microdisplays have significant advantages, including high brightness and high resolution, for the development of advanced displays, high-definition projectors, head-mounted displays, large-capacity optical communication systems, and so forth. Herein, a high-brightness InGaN/GaN multiple-quantum-well (MQW) nanoemitter array with an ultrahigh resolution of 31 750 dpi was achieved by combining a top-down fabrication with surface passivation of plasma-enhanced atomic layer deposition (PEALD)-grown AlN coating. With regard to the nanometer-level top-down etching, the surface damage or defects on the newly-formed sidewall play a significant role in the photoluminescence (PL) quality.
View Article and Find Full Text PDFNanoscale Res Lett
December 2017
Aluminum nitride (AlN) thin films were deposited on Si (100) substrates by using plasma-enhanced atomic layer deposition method (PEALD). Optimal PEALD parameters for AlN deposition were investigated. Under saturated deposition conditions, the clearly resolved fringes are observed from X-ray reflectivity (XRR) measurements, showing the perfectly smooth interface between the AlN film and Si (100).
View Article and Find Full Text PDF