Evidence from homogeneous liquid or flat-plate cultures indicates that biochemical cues are the primary modes of bacterial interaction with their microenvironment. However, these systems fail to capture the effect of physical confinement on bacteria in their natural habitats. Bacterial niches like the pores of soil, mucus, and infected tissues are disordered microenvironments with material properties defined by their internal pore sizes and shear moduli.
View Article and Find Full Text PDFPhyllosphere-associated microbes can significantly alter host plant fitness, with distinct functions provided by bacteria inhabiting the epiphytic (external surface) vs endophytic niches (internal leaf tissue). Hence, it is important to understand the assembly and stability of these phyllosphere communities, especially in field conditions. Broadly, epiphytic communities should encounter more environmental fluctuations and frequent immigration, whereas endophytic microbiota should face stronger host selection.
View Article and Find Full Text PDFThe genus includes widespread plant-associated bacteria that are abundant in the plant phyllosphere (leaf surfaces), consume plant-secreted methanol, and can produce plant growth-promoting metabolites. However, despite the potential to increase agricultural productivity, their impact on host fitness in the natural environment is relatively poorly understood. Here, we conducted field experiments with three traditionally cultivated rice landraces from northeastern India.
View Article and Find Full Text PDFThe ecology and distribution of many bacteria is strongly associated with specific eukaryotic hosts. However, the impact of such host association on bacterial ecology and evolution is not well understood. Bacteria from the genus Methylobacterium consume plant-derived methanol, and are some of the most abundant and widespread plant-associated bacteria.
View Article and Find Full Text PDFThe incidence of bacterial disease has increased tremendously in the last decade, because of the emergence of drug resistance strains within the bacterial pathogens. The present study was to investigate the antibacterial compound 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) isolated from marine Streptomyces sp. VITVSK1 as a potent antibacterial agent.
View Article and Find Full Text PDF