Premise: Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions.
View Article and Find Full Text PDFWe describe cloning and characterization of three rice (Oryza sativa) NADPH-cytochrome P450 reductases (OsCPRs; E.C.1.
View Article and Find Full Text PDFIdentification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode.
View Article and Find Full Text PDFHomology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.
View Article and Find Full Text PDFThe lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.
View Article and Find Full Text PDFPancreatic cancer studies have shown that inhibition of glycogen synthase kinase-3β (GSK-3β) leads to decreased cancer cell proliferation and survival by abrogating nuclear factor κB (NFκB) activity. In this investigation, various citrus compounds, including flavonoids, phenolic acids, and limonoids, were individually investigated for their inhibitory effects on GSK-3β by using a luminescence assay. Of the 22 citrus compounds tested, the flavonoids luteolin, apigenin, and quercetin had the highest inhibitory effects on GSK-3β, with 50% inhibitory values of 1.
View Article and Find Full Text PDFThe navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species.
View Article and Find Full Text PDFCytochrome P450 monooxygenases (P450s) are a diverse family of proteins that have specialized roles in secondary metabolism and in normal cell development. Two P450s in particular, CYP734A1 and CYP72C1, have been identified as brassinosteroid-inactivating enzymes important for steroid-mediated signal transduction in Arabidopsis thaliana. Genetic analyses have demonstrated that these P450s modulate growth throughout plant development.
View Article and Find Full Text PDFFatty acid synthase (FAS) is uniquely expressed at high levels in cancer cells and adipose tissue. The objectives of this study were to identify, purify and validate soy FAS inhibitory peptides and to predict their binding modes. Soy peptides were isolated from hydrolysates of purified beta-conglycinin by co-immunoprecipitation and identified using LC-MS/MS.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2009
Although the honey bee (Apis mellifera) genome contains far fewer cytochrome P450 genes associated with xenobiotic metabolism than other insect genomes sequenced to date, the CYP6AS subfamily, apparently unique to hymenopterans, has undergone an expansion relative to the genome of the jewel wasp (Nasonia vitripennis). The relative dominance of this family in the honey bee genome is suggestive of a role in processing phytochemicals encountered by honey bees in their relatively unusual diet of honey (comprising concentrated processed nectar of many plant species) and bee bread (a mixture of honey and pollen from many plant species). In this study, quercetin was initially suggested as a shared substrate for CYP6AS1, CYP6AS3, and CYP6AS4, by its presence in honey, extracts of which induce transcription of these three genes, and by in silico substrate predictions based on a molecular model of CYP6AS3.
View Article and Find Full Text PDFArch Insect Biochem Physiol
September 2008
The polyphagous corn earworm Helicoverpa zea frequently encounters aflatoxins, mycotoxins produced by the pathogens Aspergillus flavus and A. parasiticus, which infect many of this herbivore's host plants. While aflatoxin B1 metabolism by midgut enzymes isolated from fifth instars feeding on control diets was not detected, this compound was metabolized by midgut enzymes isolated from larvae consuming diets supplemented with xanthotoxin, coumarin, or indole-3-carbinol, phytochemicals that are likely to co-occur with aflatoxin in infected host plants.
View Article and Find Full Text PDFTopoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system.
View Article and Find Full Text PDFOne of the challenges faced in malarial control is the acquisition of insecticide resistance that has developed in mosquitoes that are vectors for this disease. Anopheles gambiae, which has been the major mosquito vector of the malaria parasite Plasmodium falciparum in Africa, has over the years developed resistance to insecticides including dieldrin, 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), and pyrethroids. Previous microarray studies using fragments of 230 An.
View Article and Find Full Text PDFUnder continual exposure to naturally occurring plant toxins and synthetic insecticides, insects have evolved cytochrome P450 monooxygenases (P450s) capable of metabolizing a wide range of structurally different compounds. Two such P450s, CYP6B8 and CYP321A1, expressed in Helicoverpa zea (a lepidopteran) in response to plant allelochemicals and plant signaling molecules metabolize these compounds with varying efficiencies. While sequence alignments of these proteins indicate highly divergent substrate recognition sites (SRSs), homology models developed for them indicate that the two active site cavities have essentially the same volume with distinct shapes dictated by side-chain differences in SRS1 and SRS5.
View Article and Find Full Text PDFCytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, Escherichia coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region).
View Article and Find Full Text PDFCYP6AB3v1, a cytochrome P450 monooxygenase in Depressaria pastinacella (parsnip webworm), is highly specialized for metabolizing imperatorin, a toxic furanocoumarin in the apiaceous host plants of this insect. Cloning and heterologous expression of CYP6AB3v2, an allelic variant identified in D. pastinacella, reveals that it metabolizes imperatorin at a rate (V(max) of 10.
View Article and Find Full Text PDF