Latest studies confirmed that abnormal function of histone deacetylase (HDAC) plays a pivotal role in formation of tumors and is a potential therapeutic target for treating breast cancer. In this research, in-silico drug discovery approaches via quantitative structure activity relationship (QSAR) and molecular docking simulations were adapted to 43 compounds of indazole derivatives with HDAC inhibition for anticancer activity against breast cancer. The QSAR models were built from multiple linear regression (MLR), and models predictability was cross-validated by leave-one-out (LOO) method.
View Article and Find Full Text PDFExisting formats based on the simplified molecular input line entry system (SMILES) encoding and molecular graph structure are designed to encode the complete semantic and structural information of molecules. However, the physicochemical properties of molecules are complex, and a single encoding of molecular features from SMILES sequences or molecular graph structures cannot adequately represent molecular information. Aiming to address this problem, this study proposes a sequence graph cross-attention (SG-ATT) representation architecture for a molecular property prediction model to efficiently use domain knowledge to enhance molecular graph feature encoding and combine the features of molecular SMILES sequences.
View Article and Find Full Text PDFCompound-protein interaction (CPI) affinity prediction plays an important role in reducing the cost and time of drug discovery. However, the interpretability of how fragments function in CPI is impacted by the fact that current methods ignore the affinity relationships between fragments of compounds and fragments of proteins in CPI modeling. This article introduces an improved Transformer called FOTF-CPI (a Fusion of Optimal Transport Fragments compound-protein interaction prediction model).
View Article and Find Full Text PDFThrough the revolutionization of artificial intelligence (AI) technologies in clinical research, significant improvement is observed in diagnosis of cancer. Utilization of these AI technologies, such as machine and deep learning, is imperative for the discovery of novel anticancer drugs and improves existing/ongoing cancer therapeutics. However, building a model for complicated cancers and their types remains a challenge due to lack of effective therapeutics that hinder the establishment of effective computational tools.
View Article and Find Full Text PDFIn the past few decades, chronic hepatitis B caused by hepatitis B virus (HBV) has been one of the most serious diseases to human health. The development of innovative systems is essential for preventing the complex pathogenesis of hepatitis B and reducing side effects caused by drugs. HBV inhibitory drugs have been developed through various compounds, and they are often limited by routine experimental screening and delay drug development.
View Article and Find Full Text PDFDrought is the primary and dominant natural cause of stress on vegetation, and thus, it needs our full attention. Current understanding of drought across extensive spatial measures, around the world, is considerably limited. As case studies to evaluate the feasibility of utilizing space-based solar-induced chlorophyll fluorescence (SIF) across extensive spatial measures, here, we have used data from 2007 to 2017 in Heilongjiang and Jiangsu provinces of China.
View Article and Find Full Text PDF