Publications by authors named "Sanjeeb K Sahoo"

Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells.

View Article and Find Full Text PDF
Article Synopsis
  • Cisplatin is a common chemotherapy treatment for advanced-stage oral squamous cell carcinoma (OSCC), but it can lead to the cancer coming back or spreading because cells can become resistant to it.
  • Scientists are investigating a substance called piperlongumine (PL) that could help make cancer cells more sensitive to cisplatin, but it has some challenges with being used as a medicine.
  • To make it work better, researchers created special nanoparticles (smart PL-NPs) that can deliver PL directly to cancer cells, helping to stop drug resistance and reduce tumor growth in models like mice and zebrafish.
View Article and Find Full Text PDF

Cancer is the second-leading cause of death in the 21st century, where early detection and appropriate therapeutic interventions are two components essential for effective cancer management. Despite the availability of several conventional diagnostics and therapeutic agents, cancer mortality rates are rising due to an increase in the frequency of recurrence and metastasis in cancer patients. Therefore, tremendous efforts have been expended to address this significant clinical issue and improve therapeutic efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Triple negative breast cancer (TNBC) is highly aggressive and resistant to treatment, largely due to cancer stem cells (CSCs) that conventional therapies fail to target, necessitating new strategies for effective treatment.
  • * This research focuses on the elevated glycolytic metabolism in breast CSCs, aiming to exploit their metabolic vulnerabilities to enhance TNBC treatment.
  • * By using a new form of the drug piperlongumine (PL) delivered through nanoparticles (PL-NPs), the study showed that this method effectively inhibits glycolysis in CSCs and leads to significant tumor regression in preclinical models.
View Article and Find Full Text PDF
Article Synopsis
  • Breast Cancer is the most common cancer in the world, but current treatments can hurt healthy tissues and sometimes don't work well.
  • Researchers are looking into natural plant chemicals and essential oils because they might target tumors safely and effectively.
  • Using technology, scientists have found ways to improve the effectiveness of essential oils in fighting breast cancer, making them more stable and easier to use in treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) has a high number of breast cancer stem-like cells (BCSCs), which worsen the disease’s prognosis and lead to metastasis and relapse, making BCSCs a target for treatment.
  • The study introduced nimbolide (Nim) encapsulated in PLGA nanoparticles (Nim NPs) to enhance its anticancer effects, finding that Nim NPs effectively reduced key BCSC characteristics better than Nim alone.
  • The mechanism behind Nim NPs' effectiveness involves the restoration of a tumor suppressor gene (SFRP1) through downregulation of DNA methyltransferases, which inhibits a specific signaling pathway, demonstrating the potential of Nim-based phytonanomedicine to combat
View Article and Find Full Text PDF

Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer.

View Article and Find Full Text PDF

Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by H/C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction.

View Article and Find Full Text PDF

Currently, cancer is the most grieving threat to society. The cancer-related death rate has had an ascending trend, despite the implementation of numerous treatment strategies or the discovery of an array of potent molecules against several pathways of cancer growth. The need of the hour is to prevent the multidrug resistance toll, and the current efforts have been bestowed upon a versatile small molecule scaffold, coumarin (benz[α]pyrone), a natural compound possessing interesting affinity toward the cancer target human carbonic anhydrase (hCA), focusing on hCA I, II, IX, and XII.

View Article and Find Full Text PDF

Breast Cancer is one of the most notorious cancer affecting women globally. Current therapies available for breast cancer treatment have certain limited efficacy; develop drug resistance and severe adverse effects. Thus, identifying novel therapies for treatment will reduce the devastating effect on cancer survivors.

View Article and Find Full Text PDF

Cancer remains a major worldwide health challenge. Current studies emphasize the tumor microenvironment that plays a vital role in tumor proliferation, invasion, metastasis, and drug resistance. The tumor microenvironment (TME) supports the cancer cell to evade conventional treatment such as surgery, radiotherapy, and chemotherapy.

View Article and Find Full Text PDF

Drug delivery to central nervous system (CNS) diseases is one of the most challenging tasks. The innate blood-brain barrier (BBB) and the blood-cerebrospinal fluid (BCSF) barrier create an obstacle to effective systemic drug delivery to the CNS, by limiting the access of drugs to the brain. Nanotechnology-based drug delivery platform offers a potential therapeutic approach for the treatment of neurological disorders.

View Article and Find Full Text PDF

Background: The fetus grows in a sterile womb environment. After birth, the newborn immune system has two immediate hurdles to clear. First immediate suppression of the womb compatible immune system and turn on the immune system of the newborn that can counter the antigenic world.

View Article and Find Full Text PDF

TNBC exhibits higher rate of chemoresistance, metastasis, and relapse among all subtypes of breast cancer. This malignant statein TNBC is due to self-renewing sub-population of cells called cancer stem cells (CSCs). They are major caveats in TNBC treatment and need to be obliterated.

View Article and Find Full Text PDF

Background: The current disadvantages (high cost, toxicity, resistance) of chemotherapy for gastric cancer opted people for alternative therapy from natural source. Curcumin (natural product) possess multiple biological activities but low bio-availability limits their uses as therapeutic. The Nano-formulation of curcumin increased the bioavailability and productivity of anti-cancer and anti-bacterial properties.

View Article and Find Full Text PDF

Cancer stem-like cells (CSCs) have emerged as an important target for breast cancer therapy owing to their self-renewability, proliferation, and elevated chemoresistance properties. Here, we present a strategy of eliminating CSCs by differentiation therapy where "forced differentiation" reprograms CSCs so that they lose their intrinsic properties and become susceptible for conventional chemotherapeutic drugs. In this study, we report that a conventional chemotherapeutic paclitaxel enhances the stemness of CSCs, while a phytochemical forskolin being essentially nontoxic to CSCs possesses the intrinsic ability to reprogram them.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis and remains highly aggressive despite current advancements in therapies. Chemoresistance and high metastatic nature of PDAC is attributed to a small subset of stem-like cells within the tumor known as Cancer Stem Cells (CSCs). Here, we developed a strategy for targeting pancreatic CSCs through forceful induction of mesenchymal-to-epithelial transition driven by encapsulating a phytochemical Nimbolide in nanoparticles.

View Article and Find Full Text PDF

The outbreak of SARS-CoV-2 infection has presented the world with an urgent demand for advanced diagnostics and therapeutics to prevent, treat and control the spread of infection. Nanotechnology seems to be highly relevant in this emergency due to the unique physicochemical properties of nanomaterials which offer versatile chemical functionalization to create advanced biomedical tools. Here, nano-intervention is discussed for designing effective strategies in developing advanced personal protective equipment kits, disinfectants, rapid and cost-effective diagnostics and therapeutics against the infection.

View Article and Find Full Text PDF

Background: Cancer stem cells (CSCs) have features such as the ability to self-renew, differentiate into defined progenies and initiate the tumor growth. Treatments of cancer include drugs, chemotherapy and radiotherapy or a combination. However, treatment of cancer by various therapeutic strategies often fail.

View Article and Find Full Text PDF

Research suggests that tumor relapse and metastasis is caused by minor population of tumor-initiating cells called cancer stem cells (CSCs), which exhibit self-renewability, quiescence, antiapoptosis, and drug resistance. Conventional chemotherapeutics target rapidly proliferating cells but fail to exert cytotoxic effects on CSCs, thus enriching them and driving metastasis and relapse. Hence, targeting CSCs is essential for developing novel therapies for effective cancer treatment.

View Article and Find Full Text PDF

Targeted cancer therapy facilitates localizing the action of chemotherapeutic drugs at the tumor site enhancing the therapeutic efficacy and reducing the side effects to the healthy cells. The homing property of mesenchymal stem cells (MSCs), towards the tumor tissues makes them a potential cell-based delivery system for targeted cancer therapy. Along with chemotherapy, hyperthermia has gained interest as a treatment modality of cancer due to the higher sensitivity of the cancer cells towards heat and also due to its action on tumor cells to enhance sensitization towards chemotherapy or radiotherapy.

View Article and Find Full Text PDF

The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system.

View Article and Find Full Text PDF

Aim: This study is aimed to formulate crocetin-loaded lipid Nanoparticles (NPs) and to evaluate its antioxidant properties in a cyclosporine A-mediated toxicity in Human Embryonic Kidney (HEK-293) cells in vitro.

Main Methods: Crocetin-loaded NPs were prepared followed by physicochemical characterization. In vitro protective efficacy of crocetin and crocetin loaded NPs was investigated in cyclosporine A-mediated toxicity in HEK-293 cells by assessing free radical scavenging, DNA Nicking, cytotoxicity, intracellular Reactive oxygen species (ROS) inhibition, Mitochondrial membrane potential (MMPs) loss and evaluating the activity and expression of antioxidant enzymes and non-enzyme level.

View Article and Find Full Text PDF