We design an optical feedback network making use of machine learning (ML) techniques and demonstrate via simulations its ability to correct for the effects of turbulent propagation on optical modes. This artificial neural network scheme relies only on measuring the intensity profile of the distorted modes, making the approach simple and robust. The network results in the generation of various mode profiles at the transmitter that, after propagation through turbulence, closely resemble the desired target mode.
View Article and Find Full Text PDFInformation transfer rates in optical communications may be dramatically increased by making use of spatially non-Gaussian states of light. Here, we demonstrate the ability of deep neural networks to classify numerically generated, noisy Laguerre-Gauss modes of up to 100 quanta of orbital angular momentum with near-unity fidelity. The scheme relies only on the intensity profile of the detected modes, allowing for considerable simplification of current measurement schemes required to sort the states containing increasing degrees of orbital angular momentum.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
August 2016
The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and `best practices' for performing CSP calculations.
View Article and Find Full Text PDF