Deep eutectic solvents (DESs) have gained popularity in various applications due to their improved environmental sustainability and biodegradability. For the present study, several polyhydric alcohols, including ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), and glycerol (Gly), have been used as hydrogen bond donors (HBDs) and choline chloride (ChCl) as a hydrogen bond acceptor (HBA) in a fixed molar ratio to form a homogenous and stable DES. Controlled water mixing into such neat DESs has always been thought to be a quick and efficient method to tune the chemical and thermodynamic properties of DESs.
View Article and Find Full Text PDFRechargeable aqueous zinc-iodine batteries (AZIBs) represent excellent zinc-iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal-organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced.
View Article and Find Full Text PDF