Air pollution and environmental issues significantly impact life, resulting in the emergence and exacerbation of allergic asthma and other chronic respiratory infections. The main objective of this study is to suppress allergic asthma by TAK-242 from lipopolysaccharide-induced airway inflammation primarily stimulating toll-like receptor-4, and also to determine the potential mechanism of asthma eradication. The TAK-242 anti-allergic action was assured through the ovalbumin murine model of asthma via bronchial hyperresponsiveness and inflammation of the respiration tract in a pre-existing allergic inflammation paradigm.
View Article and Find Full Text PDFChitosan (CS) nanoparticles of thymoquinone (TQ) were prepared by the ionic gelation method and are characterized on the basis of surface morphology, in vitro or ex vivo release, dynamic light scattering, and X-ray diffractometry (XRD) studies. Dynamic laser light scattering and transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. The results showed that the particle size of the formulation was significantly affected by the drug:CS ratio, whereas it was least significantly affected by the tripolyphosphate:CS ratio.
View Article and Find Full Text PDFIntroduction: Safranal is an effective anticonvulsant shown to act as an agonist at GABA(A) receptors. Nose to brain delivery via nanoparticle formulation might improve its brain delivery. A selective and sensitive analytical method is required for evaluation of safranal-based novel drug delivery systems.
View Article and Find Full Text PDF