Background: The serine/threonine mammalian Ste-20 like kinases (MSTs) are key regulators of apoptosis, cellular proliferation as well as polarization. Deregulation of MSTs has been associated with disease progression in prostate and colorectal cancer. The four human MSTs are regulated differently by C-terminal regions flanking the catalytic domains.
View Article and Find Full Text PDFSplicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained.
View Article and Find Full Text PDFThe dimeric Ser/Thr kinase Nek2 regulates centrosome cohesion and separation through phosphorylation of structural components of the centrosome, and aberrant regulation of Nek2 activity can lead to aneuploid defects characteristic of cancer cells. Mutational analysis of autophosphorylation sites within the kinase domain identified by mass spectrometry shows a complex pattern of positive and negative regulatory effects on kinase activity that are correlated with effects on centrosomal splitting efficiency in vivo. The 2.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2006
Pyridoxal kinases (PdxK) are able to catalyse the phosphorylation of three vitamin B(6) precursors, pyridoxal, pyridoxine and pyridoxamine, to their 5'-phosphates and play an important role in the vitamin B(6) salvage pathway. Recently, the thiD gene of Bacillus subtilis was found to encode an enzyme which has the activity expected of a pyridoxal kinase despite its previous assignment as an HMPP kinase owing to higher sequence similarity. As such, this enzyme would appear to represent a new class of ;HMPP kinase-like' pyridoxal kinases.
View Article and Find Full Text PDFPyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution.
View Article and Find Full Text PDFBacillus subtilis YsxC has been putatively identified as a member of the GTP-binding protein family. Gene-knockout/deletion analysis has suggested that this protein is essential for survival of the microorganism and hence may represent a target for the development of a novel anti-infective agent. The B.
View Article and Find Full Text PDF