Background: Diffuse Midline Glioma (DMG) is a highly aggressive pediatric brain tumor with limited treatment options despite extensive genomic characterization. The aim of this study was to investigate the proteomic landscape of DMG to identify potential therapeutic targets.
Methods: We conducted a comprehensive proteomic analysis using LC-MS3, along with DNA methylation and DNA/RNA sequencing in 55 DMG patients' samples.
Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.
View Article and Find Full Text PDFHistone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear.
View Article and Find Full Text PDFHistone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.
View Article and Find Full Text PDFPediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. To address this, we characterized a cohort of >1,000 clinically annotated pLGG. Eighty-four percent of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway.
View Article and Find Full Text PDFPaediatric brain tumours arising in the thalamus present significant diagnostic and therapeutic challenges to physicians due to their sensitive midline location. As such, genetic analysis for biomarkers to aid in the diagnosis, prognosis and treatment of these tumours is needed. Here, we identified 64 thalamic gliomas with clinical follow-up and characterized targeted genomic alterations using newly optimized droplet digital and NanoString-based assays.
View Article and Find Full Text PDFUnlabelled: Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity.
View Article and Find Full Text PDFDiffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.
View Article and Find Full Text PDFKIF14 (kinesin family member 14) is a mitotic kinesin and an important oncogene in several cancers. Tumor KIF14 expression levels are independently predictive of poor outcome, and in cancer cells KIF14 can modulate metastatic behavior by maintaining appropriate levels of cell adhesion and migration proteins at the cell membrane. Thus KIF14 is an exciting potential therapeutic target.
View Article and Find Full Text PDFBackground: Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations.
View Article and Find Full Text PDFBackground: Most human cancers show inactivation of both pRB- and p53-pathways. While retinoblastomas are initiated by loss of the RB1 tumor suppressor gene, TP53 mutations have not been found. High expression of the p53-antagonist MDM2 in human retinoblastomas may compromise p53 tumor surveillance so that TP53 mutations are not selected for in retinoblastoma tumorigenesis.
View Article and Find Full Text PDFPurpose: Human retinoblastoma arises from an undefined developing retinal cell after inactivation of RB1. This is emulated in a murine retinoblastoma model by inactivation of pRB by retinal-specific expression of simian virus 40 large T-antigen (TAg-RB). Some mutational events after RB1 loss in humans are recapitulated at the expression level in TAg-RB, supporting preclinical evidence that this model is useful for comparative studies between mouse and human.
View Article and Find Full Text PDFThe novel oncogene KIF14 (kinesin family member 14) shows genomic gain and overexpression in many cancers including OvCa (ovarian cancer). We discovered that expression of the mitotic kinesin KIF14 is predictive of poor outcome in breast and lung cancers. We now determine the prognostic significance of KIF14 expression in primary OvCa tumors, and evaluate KIF14 action on OvCa cell tumorigenicity in vitro.
View Article and Find Full Text PDFCDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2008
It is still not clear whether the p53 pathway is altered in retinoblastoma development. We assessed the expression of the p53 pathway genes p14(ARF), mouse double minute 2 (MDM2), and mouse double minute 4 (MDM4) in human retinoblastoma compared to normal retina. Primary human retinoblastomas, retinoblastoma cell lines and normal retinas were assessed for p14(ARF) and MDM4 mRNA by quantitative RT-PCR.
View Article and Find Full Text PDFAlthough RB1 function is disrupted in the majority of human cancers, an undefined cell of developing human retina is uniquely sensitive to cancer induction when the RB1 tumor suppressor gene is lost. Murine retinoblastoma is initiated only when two of the RB family of genes, RB1 and p107 or p130, are inactivated. Although whole embryonic retina shows RB family gene expression by several techniques, when E14 developing retina was depleted of the earliest differentiating cells, ganglion cells, the remaining proliferating murine embryonic retinal progenitor cells clearly did not express RB1 or p130, while the longer splice form of p107 was expressed.
View Article and Find Full Text PDFAll retinoblastomas (RBs) show genomic changes in addition to loss of both RB1 alleles. Quantitative-multiplex PCR analysis identified in 41 of 70 (59%) RBs a 0.6-Mb minimal region of chromosome 6p22 gain from which we cloned the human kinesin gene, RBKIN/KIF13A, by rapid amplification of retinal cDNA.
View Article and Find Full Text PDF