Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research.
View Article and Find Full Text PDFPyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail.
View Article and Find Full Text PDFMost flavin-dependent enzymes contain a dissociable flavin cofactor. We present a new approach for installing in vivo a covalent bond between a flavin cofactor and its host protein. By using a flavin transferase and carving a flavinylation motif in target proteins, we demonstrate that "dissociable" flavoproteins can be turned into covalent flavoproteins.
View Article and Find Full Text PDFThe chemical 5-hydroxymethylfurfural (HMF) can be derived from lignocellulose and is an interesting bio-based platform chemical as it has the potential to be transformed into numerous valuable building blocks such as the polymer-precursor 2,5-diformylfuran (DFF). To date, only a few oxidases acting on HMF are known and by sampling atypical species, we discovered a novel flavin-dependent oxidoreductase from the honeybee Apis mellifera (beeHMFO). The enzyme can perform the chemoselective oxidation of HMF to DFF but can also readily accept other aromatic alcohols as substrates.
View Article and Find Full Text PDF