Publications by authors named "Sani Abba"

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

Nitrate contamination in drinking water poses significant health risks, particularly in rapidly urbanizing areas of developing countries. This study presents an integrated computational and graphical approach to evaluate the geochemistry and health risks of nitrate-contaminated water for six age groups in Southeast, Nigeria. The research employed a detailed methodology combining water nutrient pollution index (WNPI), nitrate pollution index (NPI), water pollution index (WPI), geochemical plotting techniques, stoichiometry, and health risk computations.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates that there is a correction being made to a previously published article.
  • The DOI (Digital Object Identifier) provided leads to the original article, which may have errors or issues that need addressing.
  • This correction is important for maintaining the accuracy and integrity of the research published in the article.
View Article and Find Full Text PDF

Soil loss is aggravated by uncontrolled deforestation, indiscriminate land clearing for agricultural activities, overgrazing, and urban development that leads to severe soil erosion over the land surface. The main objective of this research is to apply the Revised Universal Soil Loss Equation (RUSLE), in conjunction with remote sensing and GIS, to determine the temporal variation of soil loss from the Gubi watershed in the years 2000 and 2017 and to estimate the sediment delivery into the Gubi reservoir in Northern Nigeria. Datasets of rainfall, soil type, topography, cover management, and support practice were utilized to determine the five RUSLE factors.

View Article and Find Full Text PDF

Addressing global freshwater scarcity requires innovative technological solutions, among which desalination through thin-film composite polyamide membranes stands out. The performance of these membranes plays a vital role in desalination, necessitating advanced predictive modeling for optimization. This study harnesses machine learning (ML) algorithms, including support vector machine (SVM), neural networks (NN), linear regression (LR), and multivariate linear regression (MLR), alongside their ensemble techniques to predict and enhance average water flux (AWF) and average salt rejection (ASR) essential metrics of desalination efficiency.

View Article and Find Full Text PDF

Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil.

View Article and Find Full Text PDF

This study presents an innovative approach for predicting water and groundwater quality indices (WQI and GWQI) in the Eastern Province of Saudi Arabia, addressing critical challenges of scarcity and pollution in arid regions. Recent literature highlights the increasing attention towards WQI based on water pollution index (WPI) and GWQI as essential tools for simplifying complex hydrogeological data, thereby facilitating effective groundwater management and protection. Unlike previous works, the present research introduces a novel hybrid method that integrates non-parametric kernel Gaussian learning (GPR), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) algorithms.

View Article and Find Full Text PDF

The rising heavy metal (HM) pollution in coastal aquifers in rapidly urbanizing areas such as Dammam leads to significant risks to public health and environmental sustainability, challenging compliance with Environmental Protection Agency (EPA) guidelines, World Health Organization (WHO) standards, and Sustainable Development Goals (SDGs) related to clean water and life on land. This study developed the predictive-based monitoring of HM concentrations, including cadmium (Cd), chromium (Cr), and mercury (Hg) in the coastal aquifers of Dammam, influenced by industrial, agricultural, and urban activities. For this purpose, dynamic system identification and machine learning (ML) models integrated with three ensemble techniques, namely, simple averaging (SAE), weighted averaging (WAE), and neuro-ensemble (N-ESB), were employed to enhance the accuracy, reliability, and efficiency of environmental monitoring systems.

View Article and Find Full Text PDF

The concept of security is becoming a global challenge, and governments, stakeholders, corporate societies, and individuals must urgently create a reasonable protection mechanism for good. Therefore, a real-time surveillance system is essential for detection, tracking, and monitoring. Many studies have attempted to provide better solutions but more research and better approaches are essential.

View Article and Find Full Text PDF

Predicting the efficacy of micropollutant separation through functionalized membranes is an arduous endeavor. The challenge stems from the complex interactions between the physicochemical properties of the micropollutants and the basic principles underlying membrane filtration. This study aimed to compare the effectiveness of a modest dataset on various machine learning tools (ML) tools in predicting micropollutant removal efficiency for functionalized reverse osmosis (RO) and nanofiltration (NF) membranes.

View Article and Find Full Text PDF

Artificial intelligence (AI) is being employed in brine mining to enhance the extraction of lithium, vital for the manufacturing of lithium-ion batteries, through improved recovery efficiencies and the reduction of energy consumption. An innovative approach was proposed combining Emotional Neural Networks (ENN) and Random Forest (RF) algorithms to elucidate the adsorption energy (AE) (kcal mol) of Li ions by utilizing crown ether (CE)-incorporated honeycomb 2D nanomaterials. The screening and feature engineering analysis of honeycomb-patterned 2D materials and individual CE were conducted through Density Functional Theory (DFT) and Gaussian 16 simulations.

View Article and Find Full Text PDF

Reliable modeling of oily wastewater emphasizes the paramount importance of sustainable and health-conscious wastewater management practices, which directly aligns with the Sustainable Development Goals (SDG) while also meeting the guidelines of the World Health Organization (WHO). This research explores the efficiency of utilizing polypyrrole-coated ceramic-polymeric membranes to model oily wastewater separation efficiency (SE) and permeate flux (PF) based on established experimental procedures. In this area, computational simulation still needs to be explored.

View Article and Find Full Text PDF

River water quality management and monitoring are essential responsibilities for communities near rivers. Government decision-makers should monitor important quality factors like temperature, dissolved oxygen (DO), pH, and biochemical oxygen demand (BOD). Among water quality parameters, the BOD throughout 5 days is an important index that must be detected by devoting a significant amount of time and effort, which is a source of significant concern in both academic and commercial settings.

View Article and Find Full Text PDF

Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support.

View Article and Find Full Text PDF

Accurate and reliable estimation of Reference Evapotranspiration (ETo) is crucial for water resources management, hydrological processes, and agricultural production. The FAO-56 Penman-Monteith (FAO-56PM) approach is recommended as the standard model for ETo estimation; nevertheless, the absence of comprehensive meteorological variables at many global locations frequently restricts its implementation. This study compares shallow learning (SL) and deep learning (DL) models for estimating daily ETo against the FAO-56PM approach based on various statistic metrics and graphic tool over a coastal Red Sea region, Sudan.

View Article and Find Full Text PDF

This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models.

View Article and Find Full Text PDF

Cancer is one of the major causes of death in the modern world, and the incidence varies considerably based on race, ethnicity, and region. Novel cancer treatments, such as surgery and immunotherapy, are ineffective and expensive. In this situation, ion channels responsible for cell migration have appeared to be the most promising targets for cancer treatment.

View Article and Find Full Text PDF

This study presented a detailed investigation into the performance of a plate-frame water gap membrane distillation (WGMD) system for the desalination of untreated real seawater. One approach to improving the performance of WGMD is through the proper selection of cooling plate material, which plays a vital role in enhancing the gap vapor condensation process. Hence, the influence of different cooling plate materials was examined and discussed.

View Article and Find Full Text PDF

Breast cancer is a common cancer affecting women worldwide, and it progresses from breast tissue to other parts of the body through a process called metastasis. is a valuable plant with medicinal properties due to some active biological macromolecules, and it's cultivated in subtropical and tropical regions of the world. This study reports the phytochemical compositions, the cytotoxic, anti-proliferative and anti-migratory potential of methanolic (ALM) extract on strongly and weakly metastatic MDA-MB 231 and MCF-7 human breast cancer cells, respectively.

View Article and Find Full Text PDF

Floods occur frequently in Romania and throughout the world and are one of the most devastating natural disasters that impact people's lives. Therefore, in order to reduce the potential damages, an accurate identification of surfaces susceptible to flood phenomena is mandatory. In this regard, the quantitative calculation of flood susceptibility has become a very popular practice in the scientific research.

View Article and Find Full Text PDF

Right ventricular heart failure (RVHF) mostly occurs due to the failure of the left-side of the heart. RVHF is a serious disease that leads to swelling of the abdomen, ankles, liver, kidneys, and gastrointestinal (GI) tract. A total of 506 heart-failure subjects from the Faculty of Medicine, Cardiovascular Surgery Department, Ege University, Turkey, who suffered from a severe heart failure and are currently receiving support from a ventricular assistance device, were involved in the current study.

View Article and Find Full Text PDF

Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task.

View Article and Find Full Text PDF

Precise monitoring of cyanobacteria concentration in water resources is a daunting task. The development of reliable tools to monitor this contamination is an important research topic in water resources management. Indirect methods such as chlorophyll-a determination, cell counting, and toxin measurement of the cyanobacteria are tedious, cumbersome, and often lead to inaccurate results.

View Article and Find Full Text PDF

Isoquercitrin is a flavonoid chemical compound that can be extracted from different plant species such as (mango), , , (tea), and coriander ( L.). It possesses various biological activities such as the prevention of thromboembolism and has anticancer, antiinflammatory, and antifatigue activities.

View Article and Find Full Text PDF

In this research, two nonlinear models, namely; adaptive neuro-fuzzy inference system and feed-forward neural network and a classical linear model were employed for the prediction of retention time of isoquercitrin in Coriander sativum L. using the high-performance liquid chromatography technique. The prediction employed the use of composition of mobile phase and pH as the corresponding input parameters.

View Article and Find Full Text PDF