Publications by authors named "Sanhita Maity"

Incorporation of regular order pores/holes/defects into semimetalic graphene sheets can tune the band gap up to 1 eV or more introducing semiconducting property and therefore exhibiting promising applications for organic electronics such as field-effect transistors (FETs), molecular sieve membranes, gas sensing, catalysis devices, etc. In this mini review, we focused on bottom-up approaches to introduce periodic homogeneous pores into graphene and nanographene and graphene nanoribbons along with their characteristics and potential applications in various fields.

View Article and Find Full Text PDF

In the bloodstream, insulin interacts with various kinds of molecules, which can alter its structure and modulate its function. In this work, we have synthesized two molecules having extremely hydrophilic and hydrophobic side chains. The effects of hydrophilic and hydrophobic molecules on the binding with insulin have been investigated through a multi-spectroscopic approach.

View Article and Find Full Text PDF

Deposition of oxidation-modified proteins during normal aging and oxidative stress are directly associated with systemic amyloidoses. Methionine (Met) is believed to be one of the most readily oxidisable amino acid residues of protein. Bovine beta-lactoglobulin (β-lg), a model globular whey protein, has been presented as a subsequent paradigm for studies on protein aggregation and amyloid formation.

View Article and Find Full Text PDF

Heparin, a polysulfated polyanionic member of the glycosaminoglycan family, is known to specifically bind to a number of functionally important proteins. Based on the available information on structural specificity of heparin-protein interactions, a novel heparin-binding peptide (HB) affinity tag has been designed to achieve simple and cost-effective purification of target recombinant proteins. The HB-fused recombinant target proteins are purified on a heparin-Sepharose column using a stepwise/continuous sodium chloride gradient.

View Article and Find Full Text PDF

Background: The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT.

View Article and Find Full Text PDF

Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1).

View Article and Find Full Text PDF

Silver nanoparticles (SNPs) have been increasingly used in medicines and biomaterials as a drug carriers and diagnostic or therapeutic material due to their smaller size, large surface area and cell penetration ability. Here we report the preparation of SNPs of diameter 10 ± 3 nm by using silver nitrate and sodium borohydride and the interaction of synthesized SNPs with our model protein β-lactoglobulin (β-lg) in 10 mM phosphate buffer at pH 7.5 after thermal exposure at 75 °C.

View Article and Find Full Text PDF

Many proteins form ordered irreversible aggregates called amyloid fibrils which are responsible for several neurodegenerative diseases. β-lactoglobulin (β-lg), an important globular milk protein, self-assembles to form amyloid-like fibrils on heating at low pH. The present study investigated the effects of two commonly used organic solvents acetonitrile (MeCN) and antimicrobial preservative benzyl alcohol (BA) on the conformation and self-assembly of β-lg at ambient condition.

View Article and Find Full Text PDF

The endogenous deposition of protein fibrillar aggregates in the tissues is the cause of several neurodisorders. In the present study the native β-lactoglobulin (β-lg) has been driven towards amyloid fibrillar aggregates when it was exposed to heat at 75°C for 1h at pH 7.5.

View Article and Find Full Text PDF