Yu . suggested calculating precisely the size ranges of the three parts of our figure 3A, adjusting the free-energy levels in figure 3B, and considering the shape effect in the first-principles calculation. The first and second suggestions raise strong concerns for misinterpretation and overinterpretation of our experiments.
View Article and Find Full Text PDFThe hydrogel of biomolecule-assisted metal/organic complex has the superior ability to form a uniform, continuous, and densely integrated structure, which is necessary for fine thin film fabrication. As a representative of nature-originated polymers with abundant reactive side chains, we select the gelatin molecule as an element for weaving the metal cations. Here, we demonstrate the interaction between the metal cation and gelatin molecules, and associate it with coating quality.
View Article and Find Full Text PDFNucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition.
View Article and Find Full Text PDFSearching for new molecules in areas like drug discovery often starts from the core structures of known molecules. Such a method has called for a strategy of designing derivative compounds retaining a particular scaffold as a substructure. On this account, our present work proposes a graph generative model that targets its use in scaffold-based molecular design.
View Article and Find Full Text PDFIn theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states.
View Article and Find Full Text PDFDensity functional theory (DFT) has been an essential tool for electronic structure calculations in various fields. In particular, its hybrid method including the Hartree-Fock (HF) exchange term remarkably improves the reliability of DFT for chemical applications and computational material design. There are two different types of exchange-correlation potential that can be derived from hybrid functionals.
View Article and Find Full Text PDFWe developed a program code of configuration interaction singles (CIS) based on a numerical grid method. We used Kohn-Sham (KS) as well as Hartree-Fock (HF) orbitals as a reference configuration and Lagrange-sinc functions as a basis set. Our calculations show that KS-CIS is more cost-effective and more accurate than HF-CIS.
View Article and Find Full Text PDF