Regulatory T (Treg) cells control self-tolerance, inflammatory responses and tissue homeostasis. In mature Treg cells, continued expression of FOXP3 maintains lineage identity, while T cell receptor (TCR) signaling and interleukin-2 (IL-2)/STAT5 activation support the suppressive effector function of Treg cells, but how these regulators synergize to control Treg cell homeostasis and function remains unclear. Here we show that TCR-activated posttranslational modification by O-linked N-Acetylglucosamine (O-GlcNAc) stabilizes FOXP3 and activates STAT5, thus integrating these critical signaling pathways.
View Article and Find Full Text PDFBackground: Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection.
Results: Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC.
Despite the successes of antiretroviral therapy (ART), HIV-associated neurocognitive disorders remain prevalent in infected people. This is due, in part, to incomplete ART penetration across the blood-brain barrier (BBB) and lymph nodes and to the establishment of viral sanctuaries within the central nervous system. In efforts to improve ART delivery, our laboratories developed a macrophage-carriage system for nanoformulated crystalline ART (nanoART) (atazanavir, ritonavir, indinavir, and efavirenz).
View Article and Find Full Text PDFRationale: HIV-1-induced interstitial pneumonitis (IP) is a serious complication of HIV-1 infection, characterized by inflammation and cellular infiltration in lungs, often leading to respiratory failure and death. The barrier function of the pulmonary endothelium is caused in part by tight junction (TJ) proteins, such as claudin-5. Peroxisome proliferator-activated receptor (PPAR)-γ is expressed in lung tissues and regulates inflammation.
View Article and Find Full Text PDFLimitations inherent to antiretroviral therapy (ART) in its pharmacokinetic properties remain despite over 15 years of broad use. Our laboratory has pioneered a means to improve ART delivery through monocyte-macrophage carriage of nanoformulated drug-encapsulated particles (nanoART). To this end, our prior works sought to optimize nanoART size, charge, and physical properties for cell uptake and antiretroviral activities.
View Article and Find Full Text PDFHow neuroinflammation affects signaling pathways leading to human blood-brain barrier (BBB) dysfunction during HIV-1 infection is incompletely understood. We previously demonstrated that signal transducers and activators of transcription-1 (STAT1) signaling is involved in HIV-1 induced BBB damage and is relevant to viral neuropathogenesis. The objective of this study was to delineate the signaling pathways upstream and downstream of STAT1 involved in HIV-1-induced endothelial dysfunction.
View Article and Find Full Text PDF