Publications by authors named "Sangwook Wu"

Alcohol dehydrogenases (ADHs) are critical enzymes involved in the oxidation of alcohols, contributing to various metabolic pathways across organisms. This study investigates type I functional divergence within three ADH1 families: (PDB ID: 4W6Z), (PDB ID: 1CDO), and (PDB ID: 1HDX). Understanding the molecular evolution and mechanisms underlying functional divergence of ADHs is essential for comprehending their adaptive significance.

View Article and Find Full Text PDF

Allosteric inhibitors of mitogen-activated protein kinase 1 (MEK1) reveal distinct interactions with MEK1 activation loop residues. The structural analyses will determine whether, and how, distinct inhibitors suppress the phosphorylation of MEK1 and may guide future therapeutic development. In this study, we explored the suppression mechanism of the phosphorylation process in the presence of MEK allosteric inhibitors, such as selumetinib, trametinib, cobimetinib, and CH5126766, by employing molecular dynamics simulations accompanied by principal component analysis.

View Article and Find Full Text PDF

Coarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes, including protein-ligand binding. However, the current ligand parametrization scheme is manual and requires an a priori reference all-atom (AA) simulation for benchmarking.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are heterobifunctional ligands that mediate the interaction between a protein target and an E3 ligase, resulting in a ternary complex, whose interaction with the ubiquitination machinery leads to target degradation. This technology is emerging as an exciting new avenue for therapeutic development, with several PROTACs currently undergoing clinical trials targeting cancer. Here, we describe a general and computationally efficient methodology combining restraint-based docking, energy-based rescoring, and a filter based on the minimal solvent-accessible surface distance to produce PROTAC-compatible PPIs suitable for when there is no known PROTAC ligand.

View Article and Find Full Text PDF

Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding complications in patients.

View Article and Find Full Text PDF

RNA structure is conformationally dynamic, and accurate all-atom tertiary (3D) structure modeling of RNA remains challenging with the prevailing tools. Secondary structure (2D) information is the standard prerequisite for most RNA 3D modeling. Despite several 2D and 3D structure prediction tools proposed in recent years, one of the challenges is to choose the best combination for accurate RNA 3D structure prediction.

View Article and Find Full Text PDF
Article Synopsis
  • Coarse-grained (CG) modelling using the Martini force field has advanced significantly, allowing accurate simulations of large biomolecular structures over millisecond timescales.
  • The updated Martini 3 model has potential applications in drug discovery, particularly in drug design and delivery, due to its efficiency and ability to explore a wide range of chemical scenarios.
  • However, improvements are needed in areas like automatic parameterization, protein flexibility representation, and better sampling methods before it can be widely adopted in research and industry.
View Article and Find Full Text PDF

A functional group in a molecule is a structural fragment consisting of a few atoms or a single atom that imparts reactivity to a molecule. Hence, defining functional groups is crucial in chemistry to predict the properties and reactivities of molecules. However, there is no established method in the literature for defining functional groups based on reactivity parameters.

View Article and Find Full Text PDF

The charge transfer (CT) process has attracted much attention due to its contribution to the improvement of spectroscopic phenomena such as Raman scattering and fluorescence. A current challenge is understanding what factors can influence CT. Here, it is demonstrated that the enhancement factor (EF) of CT (∼2000) can reach the level of electromagnetic enhancement (∼1680) when resonant CT is carried out by (Fermi level energy) band alignment between a metal nanoparticle (NP) and conjugated polymer (polypyrrole (PPy)) nanowire (NW).

View Article and Find Full Text PDF

Treating acute myeloid leukemia (AML) by targeting FMS-like tyrosine kinase 3 (FLT-3) is considered an effective treatment strategy. By using AI-assisted hit optimization, we discovered a novel and highly selective compound with desired drug-like properties with which to target the FLT-3 (D835Y) mutant. In the current study, we applied an AI-assisted design approach to identify a novel inhibitor of FLT-3 (D835Y).

View Article and Find Full Text PDF

Force fields for drug-like small molecules play an essential role in molecular dynamics simulations and binding free energy calculations. In particular, the accurate generation of partial charges on small molecules is critical to understanding the interactions between proteins and drug-like molecules. However, it is a time-consuming process.

View Article and Find Full Text PDF

Recently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose.

View Article and Find Full Text PDF

Human arginase I (HARGI) is a metalloprotein highly expressed in the liver cytosol and catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Understanding the reaction mechanism would be highly helpful to design new inhibitor molecules for HARGI as it is a target for heart- and blood-related diseases. In this study, we explored the hydrolysis reaction mechanism of HARGI with antiferromagnetic and ferromagnetic coupling between two Mn(II) ions at the catalytic site by employing molecular dynamics simulations coupled with quantum mechanics and molecular mechanics (QM/MM).

View Article and Find Full Text PDF

As pyrazole and its derivatives have a wide range of biological activities, including anticancer activity, the design of novel pyrazole derivatives has emerged as an important research field. This study describes a novel pyrazole derivative that exerts antitumor and radiosensitizing activities in breast cancer both and . We synthesized a novel pyrazole compound N,N-dimethyl-N'-(3-(1-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)phenyl)azanesulfonamide (PCW-1001) and showed that it inhibited several oncogenic properties of breast cancer both and .

View Article and Find Full Text PDF

Binding free energy estimation of drug candidates to their biomolecular target is one of the best quantitative estimators in computer-aided drug discovery. Accurate binding free energy estimation is still a challengeable task even after decades of research, along with the complexity of the algorithm, time-consuming procedures, and reproducibility issues. In this review, we have discussed the advantages and disadvantages of diverse free energy methods like Thermodynamic Integration (TI), Bennett's Acceptance Ratio (BAR), Free Energy Perturbation (FEP), and alchemical methods.

View Article and Find Full Text PDF

We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter.

View Article and Find Full Text PDF

Blood coagulation is an essential physiological process for hemostasis; however, abnormal coagulation can lead to various potentially fatal disorders, generally known as thromboembolic disorders, which are a major cause of mortality in the modern world. Recently, the FDA has approved several anticoagulant drugs for Factor Xa (FXa) which work via the common pathway of the coagulation cascade. A main side effect of these drugs is the potential risk for bleeding in patients.

View Article and Find Full Text PDF

PDE9 inhibitors have been studied to validate their potential to treat diabetes, neurodegenerative disorders, cardiovascular diseases, and erectile dysfunction. In this report, we have selected highly potent previously reported selective PDE9 inhibitors BAY73-6691R, BAY73-6691S, 28r, 28s, 3r, 3s, PF-0447943, PF-4181366, and 4r to elucidate the differences in their interaction patterns in the presence of different metal systems such as Zn/Mg, Mg/Mg, and Zn/Zn. The initial complexes were generated by molecular docking followed by molecular dynamics simulation for 100 ns in triplicate for each system to understand the interactions' stability.

View Article and Find Full Text PDF

Molecular docking is central to rational drug design. Current docking techniques suffer, however, from limitations in protein flexibility and solvation models and by the use of simplified scoring functions. All-atom molecular dynamics simulations, on the other hand, feature a realistic representation of protein flexibility and solvent, but require knowledge of the binding site.

View Article and Find Full Text PDF

High power conversion efficiency (PCE) and long-term stability are inevitable issues faced in practical device applications of perovskite solar cells. In this paper, significant enhancements in the device efficiency and stability are achieved by using a surface-active lead acetate (Pb(OAc)) at the top or bottom of CHNHPbI (MAPbI)-based perovskite. When a saturated Pb(OAc) solution is introduced on the top of the MAPbI perovskite precursor, the OAc in Pb(OAc) participates in lattice restructuring of MAPbI to form MAPbI(OAc), thereby producing a high-quality perovskite film with high crystallinity, large grain sizes, and uniform and pinhole-free morphology.

View Article and Find Full Text PDF

The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol.

View Article and Find Full Text PDF

Determination of the amino acid sequence of a protein is critical for understanding various biological processes. Mass spectrometry has mainly been used for protein identification; however, there are limitations to its sensitivity when detecting low abundance proteins. In this study, we attempted to distinguish between three similar peptide sequences (∼40 amino acids, ∼5 kDa) that differed only by the location or number of cysteine residues with solid-state nanopores.

View Article and Find Full Text PDF

Macroscopic descriptors have become valuable as coarse-grained features of complex proteins and are complementary to microscopic descriptors. Proteins macroscopic geometric features provide effective clues in the quantification of distant similarity and close dissimilarity searches for structural comparisons. In this study, we performed a systematic comparison of β-barrels, one of the important classes of protein folds in various transmembrane (TM) proteins against cytoplasmic barrels to estimate the conformational features using a joint-based descriptor.

View Article and Find Full Text PDF

Vitamin K epoxide reductase (VKOR), an endoplasmic reticulum membrane protein, is the key enzyme for vitamin K-dependent carboxylation, a posttranslational modification that is essential for the biological functions of coagulation factors. VKOR is the target of the most widely prescribed oral anticoagulant, warfarin. However, the topological structure of VKOR and the mechanism of warfarin's inhibition of VKOR remain elusive.

View Article and Find Full Text PDF

Non-receptor tyrosine kinase c-Src plays a critical role in numerous cellular signalling pathways. Activation of c-Src from its inactive to the active state involves large-scale conformational changes, and is controlled by the phosphorylation state of two major phosphorylation sites, Tyr416 and Tyr527. A detailed mechanism for the entire conformational transition of c-Src via phosphorylation control of Tyr416 and Tyr527 is still elusive.

View Article and Find Full Text PDF