We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure.
View Article and Find Full Text PDFAn asymmetric nine-arm star polymer, (polystyrene)-(poly(4-methoxystyrene))-(polyisoprene) (PS-PMOS-PI) was synthesized, and the details of the structures of its thin films were successfully investigated for the first time by using in situ grazing incidence X-ray scattering (GIXS) with a synchrotron radiation source. Our quantitative GIXS analysis showed that thin films of the star polymer molecules have very complex but highly ordered and preferentially in-plane oriented hexagonal (HEX) structures consisting of truncated PS cylinders and PMOS triangular prisms in a PI matrix. This HEX structure undergoes a partial rotational transformation process at temperatures above 190 °C that produces a 30°-rotated HEX structure; this structural isomer forms with a volume fraction of 23% during heating up to 220 °C and persists during subsequent cooling.
View Article and Find Full Text PDFThe morphological structures in thin films of a diblock copolymer of methyl methacrylate and polyhedral oligomeric silsesquioxane (POSS) functionalized methacrylate (PMMA-b-PMAPOSS) with a volume ratio of 13/87 were investigated in detail by using synchrotron grazing incidence small and wide-angle X-ray scattering (GISAXS and GIWAXS). In addition, its thermal properties were studied. Thin films of this diblock copolymer were found to undergo phase-separation during solvent-annealing with carbon disulfide and post thermal annealing.
View Article and Find Full Text PDFWe have synthesized well-defined multiarmed star polystyrenes, with 6, 9, 17, 33, and 57 arms, and studied their molecular shapes and structural characteristics in a good solvent (tetrahydrofuran at 25 degrees C) and in a theta (Theta) solvent (cyclohexane at 35 degrees C) by small-angle X-ray scattering (SAXS) using a synchrotron radiation source. Analysis of the SAXS data provided a detailed characterization of the molecular shapes, including the contributions of the blob morphology of the arms, the radius of gyration, the paired distance distribution, the radial electron density distribution, and the Zimm-Stockmayer and Roovers g-factor, for the multiarmed star polystyrenes. In particular, the molecular shapes of the star polystyrenes were found to change from a fuzzy ellipsoid, for the 6-armed polystyrene, to a fuzzy sphere, for the 57-armed polystyrene, with an increasing number of arms.
View Article and Find Full Text PDFThe structural effects of fullerene on i-motif DNA were investigated by characterizing the structures of fullerene-free and fullerene-bound i-motif DNA, in the presence of cDNA and in solutions of varying pH, using circular dichroism and synchrotron small-angle X-ray scattering. To facilitate a direct structural comparison between the i-motif and duplex structures in response to pH stimulus, we developed atomic scale structural models for the duplex and i-motif DNA structures, and for the C(60)/i-motif DNA hybrid associated with the cDNA strand, assuming that the DNA strands are present in an ideal right-handed helical conformation. We found that fullerene shifted the pH-induced conformational transition between the i-motif and the duplex structure, possibly due to the hydrophobic interactions between the terminal fullerenes and between the terminal fullerenes and an internal TAA loop in the DNA strand.
View Article and Find Full Text PDFIn this study, we quantitatively investigated the temperature-dependent phase transition behaviors of thin films of an interesting amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly(11-[4-(4-butylphenylazo)phenoxy]undecyl methacrylate) (p(EO)-b-p(MAAZ)) and the resulting morphological structures by using synchrotron grazing incidence X-ray scattering (GIXS) and differential scanning calorimetry. The quantitative GIXS analysis showed that the diblock copolymer in the homogeneous, isotropic melt state undergoes phase-separation near 190 degrees C and then forms a body-centered cubic (BCC) structure of spherical p(EO) domains in the p(MAAZ) matrix, at which point the p(EO) domains and the p(MAAZ) matrix are both in amorphous, liquid states. The BCC structure of spherical p(EO) domains is converted to a hexagonal cylinder structure near 120 degrees C, which is induced by the transformation of the isotropic phase of the p(MAAZ) matrix to the smectic A phase, which is composed of a laterally ordered structure of p(MAAZ) blocks with fully extended side groups.
View Article and Find Full Text PDFIn this study, we report the first production of two-dimensionally well-ordered molecular multilayers (i.e., with a well-defined molecular lamellar structure) based on the antiparallel beta-sheet chain conformation in thin films of a brush polypeptide, poly(S-n-hexadecyl-dl-homocysteine) (PHHC), through the use of a simple spin-coating process and the quantitative structural and property analysis of the thin films using a grazing incidence X-ray scattering technique combined with Fourier transform infrared spectroscopy and differential scanning calorimetry.
View Article and Find Full Text PDFThe crystallization behavior of microbially synthesized poly(3-hydroxybutyrate) (PHB) and its copolymers [P(HB-co-HHx)] containing 2.5, 3.4, and 12 mol % 3-hydroxyhexanoate (HHx) comonomer and the melting of the resultant crystals were studied in detail using time-resolved small-angle X-ray scattering and differential scanning calorimetry.
View Article and Find Full Text PDFIn situ grazing incidence small-angle X-ray scattering analysis was successfully performed during the thermal processing of film blends of polymethylsilsesquioxane (PMSSQ) precursor and triethoxysilyl-terminated six-arm poly(epsilon-caprolactone) (mPCL6) porogen. In addition, thermogravimetric analysis of the films was carried out in a nitrogen atmosphere. These measurements provide important information about the structures of the blend films and of the resulting porous films.
View Article and Find Full Text PDFThe miscibility and the mechanism for thermal nanopore templating in films prepared from spin-coating and subsequent drying of homogenous solutions of curable polymethylsilsesquioxane dielectric precursor and thermally labile, reactive triethoxysilyl-terminated four-armed poly(epsilon-caprolactone) porogen were investigated in detail by in situ two-dimensional grazing incidence small-angle x-ray scattering analysis. The dielectric precursor and porogen components in the film were fully miscible. On heating, limited aggregations of the porogen, however, took place in only a small temperature range of 100-140 degrees C as a result of phase separation induced by the competition of the curing and hybridization reactions of the dielectric precursor and porogen; higher porogen loading resulted in relatively large porogen aggregates and a greater size distribution.
View Article and Find Full Text PDF