Background: Child mortality is a major global health challenge, especially in regions of limited resources. Accessibility to lifesaving medicine and adequate nutrition is essential to reduce child mortality and improve the health and well-being of the world's most vulnerable children.
Methods: We have developed NutMox, a novel pediatric formulation of the β-lactam antibiotic amoxicillin in a matrix of peanut-based ready-to-use therapeutic food (RUTF) consisting of peanut butter, sugar, vegetable oil, dry milk and vitamins.
External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs.
View Article and Find Full Text PDFAntiviral drug development against respiratory syncytial virus (RSV) is urgently needed due to the public health significance of the viral infection. Here, we report the anti-RSV activity of a small molecule, (1S,3R,4R,5R)-3,4- bis{[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,5-dihydroxycyclohexane-1-carboxylic methyl ester (3,4-DCQAME) or 3,4- O-Dicaffeoylquinic acid methyl ester, which can be isolated from several plants of traditional Chinese medicine. We showed for the first time that compound 3,4-DCQAME potently inhibits RSV entry and infection.
View Article and Find Full Text PDFGene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2017
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin.
View Article and Find Full Text PDFWe have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA.
View Article and Find Full Text PDFAn external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth.
View Article and Find Full Text PDFAttenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice.
View Article and Find Full Text PDFBackground: Adenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells.
View Article and Find Full Text PDFRibonuclease P (RNase P) complexed with external guide sequence (termed as EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. In previous studies, by using an in vitro selection procedure, we have successfully generated EGS variants that are complementary to target mRNAs, and these variants exhibit higher efficiency in directing human RNase P to cleave the target mRNAs than those derived from nature RNAs in vitro. This chapter describes the procedure of using engineered EGSs for in vitro trans-cleavage of target viral mRNAs in cultured cells.
View Article and Find Full Text PDFBackground And Aims: The clinical management of tuberculosis (TB) could be greatly improved by an affordable biomarker test to monitor treatment response. Here, we examined changes in immunoglobulin M (IgM) antibody response to lipids as a potential biomarker for monitoring TB treatment in an experimental mouse model.
Methods: We performed enzyme-linked immunosorbent assay to investigate changes in IgM antibody response against cardiolipin (CL), phosphatidylcholine (PTC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and sphingolipid (SL) in BALB/c mice that were treated after being infected with Mycobacterium tuberculosis for 4 weeks (acute infection) and 20 weeks (chronic infection).
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection.
View Article and Find Full Text PDFMicrobiology (Reading)
August 2013
Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk.
View Article and Find Full Text PDFExternal guide sequences (EGSs) represent a new class of RNA-based gene-targeting agents, consist of a sequence complementary to a target mRNA, and render the target RNA susceptible to degradation by ribonuclease P (RNase P). In this study, EGSs were constructed to target the mRNA encoding human CC-chemokine receptor 5 (CCR5), one of the primary coreceptors for HIV. An EGS RNA, C1, efficiently directed human RNase P to cleave the CCR5 mRNA sequence in vitro.
View Article and Find Full Text PDFNucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts.
View Article and Find Full Text PDFUsing an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme.
View Article and Find Full Text PDFExternal guide sequences (EGSs) are RNA molecules that can bind to a target mRNA and direct ribonuclease P (RNase P), a tRNA processing enzyme, for specific cleavage of the target mRNA. Using an in vitro selection procedure, we have previously generated EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the mRNAs coding for human cytomegalovirus (HCMV) capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
Ribonuclease P complexed with external guide sequence (EGS) bound to mRNA represents a unique nucleic acid-based gene interference approach for modulation of gene expression. Compared with other strategies, such as RNA interference, the EGS-based technology is unique because a custom-designed EGS molecule can hybridize with any mRNA and recruit intracellular ribonuclease P for specific degradation of the target mRNA. It has not been reported whether the EGS-based technology can modulate gene expression in mice.
View Article and Find Full Text PDFSmall non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is the largest human herpesvirus and its virion contains many viral encoded proteins found in the capsid, tegument, and envelope. In this study, we carried out a yeast two-hybrid (YTH) analysis to study potential binary interactions among 56 HCMV-encoded virion proteins. We have tested more than 3,500 pairwise combinations for binary interactions in the YTH analysis, and identified 79 potential interactions that involve 37 proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2011
Safe, effective, and tissue-specific delivery is a central issue for the therapeutic application of nucleic-acid-based gene interfering agents, such as ribozymes and siRNAs. In this study, we constructed a functional RNase P-based ribozyme (M1GS RNA) that targets the overlapping mRNA region of M80.5 and protease, two murine cytomegalovirus (MCMV) proteins essential for viral replication.
View Article and Find Full Text PDFRibonuclease P (RNase P) complexed with external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. We have previously used an in vitro selection procedure to generate EGS variants that efficiently direct human RNase P to cleave a target mRNA in vitro. In this study, a variant was used to target the mRNA encoding the protease of human cytomegalovirus (HCMV), which is essential for viral capsid formation and replication.
View Article and Find Full Text PDFBackground: Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied.
View Article and Find Full Text PDFA fundamental challenge in gene therapy is to develop approaches for delivering nucleic acid-based gene interfering agents, such as small interfering RNAs and ribozymes, to the appropriate cells in a way that is tissue/cell specific, efficient, and safe. Using human cytomegalovirus (HCMV) infection of differentiated macrophages as the model, we showed that Salmonella can efficiently deliver RNase P-based ribozyme sequence in specific human cells, leading to substantial ribozyme expression and effective inhibition of viral infection. We constructed a functional RNase P ribozyme (M1GS RNA) that targets the overlapping mRNA region of two HCMV capsid proteins, the capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation.
View Article and Find Full Text PDF