Publications by authors named "Sangsoo Jeong"

Vehicle platooning reduces the safety distance between vehicles and the travel time of vehicles so that it leads to an increase in road capacity and to saving fuel consumption. In Europe, many projects for vehicle platooning are being actively developed, but mostly focus on truck platooning on the highway with a simpler topology than that of the urban road. When an existing vehicle platoon is applied to urban roads, many challenges are more complicated to address than highways.

View Article and Find Full Text PDF

While emerging technology for self-driving automation in vehicles progresses rapidly, the transition to an era of roads full of fully connected and automated vehicles (CAVs) may take longer than expected. Until then, it is inevitable that CAVs should coexist and interact with drivers of non-autonomous vehicles (NAVs) in urban roads. During this period of transition, it is critical to provide road safety with the mixed vehicular traffic and uncertainty caused by human drivers.

View Article and Find Full Text PDF

In the vehicular ad-hoc networks (VANETs), wireless access in vehicular environments (WAVE) as the core networking technology is suitable for supporting safety-critical applications, but it is difficult to guarantee its performance when transmitting non-safety data, especially high volumes of data, in a multi-hop manner. Therefore, to provide non-safety applications effectively and reliably for users, we propose a hybrid V2V communication system (HVCS) using hierarchical networking architecture: a centralized control model for the establishment of a fast connection and a local data propagation model for efficient and reliable transmissions. The centralized control model had the functionality of node discovery, local ad-hoc group (LAG) formation, a LAG owner (LAGO) determination, and LAG management.

View Article and Find Full Text PDF