Despite dramatic improvements in the electronic characteristics of organic semiconductors, the low operational stability of organic field-effect transistors (OFETs) hinders their direct use in practical applications. Although the literature contains numerous reports on the effects of water on the operational stability of OFETs, the underlying mechanisms of trap generation induced by water remain unclear. Here, a protonation-induced trap generation of organic semiconductors is proposed as a possible origin of the operational instability in organic field-effect transistors.
View Article and Find Full Text PDFFollowing early research efforts devoted to achieving excellent sensitivity of electronic skins, recent design schemes for these devices have focused on strategies for transduction of spatially resolved sensing data into straightforward user-adaptive visual signals. Here, a material platform capable of transducing mechanical stimuli into visual readout is presented. The material layer comprises a mixture of an ionic transition metal complex luminophore and an ionic liquid (capable of producing electrochemiluminescence (ECL)) within a thermoplastic polyurethane matrix.
View Article and Find Full Text PDFSkin-attachable gas sensors provide a next-generation wearable platform for real-time protection of human health by monitoring environmental and physiological chemicals. However, the creation of skin-like wearable gas sensors, possessing high sensitivity, selectivity, stability, and scalability (4S) simultaneously, has been a big challenge. Here, an ionotronic gas-sensing sticker (IGS) is demonstrated, implemented with free-standing polymer electrolyte (ionic thermoplastic polyurethane, i-TPU) as a sensing channel and inkjet-printed stretchable carbon nanotube electrodes, which enables the IGS to exhibit high sensitivity, selectivity, stability (against mechanical stress, humidity, and temperature), and scalable fabrication, simultaneously.
View Article and Find Full Text PDFWe demonstrate an ionic polymer artificial mechanotransducer (i-PAM) capable of simultaneously yielding an efficient wide bandwidth and a blocking force to maximize human tactile recognition in soft tactile feedback. The unique methodology in the i-PAM relies on an ionic interpenetrating nanofibrillar network that is formed at the interface of (i) an ionic thermoplastic polyurethane nanofibrillar matrix with an ionic liquid of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) and (ii) ionic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) conducting polymer electrodes with dimethyl sulfoxide and [EMIM][TFSI] as additives. The i-PAM-based actuator with the ionic PEDOT:PSS exhibits a stable operation up to 200 Hz at low voltage as well as a blocking force of 0.
View Article and Find Full Text PDFFlexible and skin-attachable vibration sensors have been studied for use as wearable voice-recognition electronics. However, the development of vibration sensors to recognize the human voice accurately with a flat frequency response, a high sensitivity, and a flexible/conformable form factor has proved a major challenge. Here, we present an ultrathin, conformable, and vibration-responsive electronic skin that detects skin acceleration, which is highly and linearly correlated with voice pressure.
View Article and Find Full Text PDFHuman skin imperfectly discriminates between pressure and temperature stimuli under mixed stimulation, and exhibits nonlinear sensitivity to each stimulus. Despite great advances in the field of electronic skin (E-skin), the limitations of human skin have not previously been overcome. For the first time, the development of a stimulus-discriminating and linearly sensitive bimodal E-skin that can simultaneously detect and discriminate pressure and temperature stimuli in real time is reported.
View Article and Find Full Text PDFUltrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices.
View Article and Find Full Text PDFA highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.
View Article and Find Full Text PDFAn artificial ionic mechanotransducer skin with an unprecedented sensitivity over a wide spectrum of pressure by fabricating visco-poroelastic nanochannels and microstructured features, directly mimicking the physiological tactile sensing mechanism of Piezo2 protein is demonstrated. This capability enables voice identification, health monitoring, daily pressure measurements, and even measurements of a heavy weight beyond capabilities of human skin.
View Article and Find Full Text PDF