Publications by authors named "Sangphil Oh"

Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes.

View Article and Find Full Text PDF

How the function of the JMJD2D epigenetic regulator is regulated or whether it plays a role in prostate cancer has remained elusive. We found that JMJD2D was overexpressed in prostate tumors, stimulated prostate cancer cell growth and became methylated by SET7/9 on K427. Mutation of this lysine residue in JMJD2D reduced the ability of DU145 prostate cancer cells to grow, invade and form tumors and elicited extensive transcriptomic changes.

View Article and Find Full Text PDF

The histone demethylase JMJD2A/KDM4A facilitates prostate cancer development, yet how JMJD2A function is regulated has remained elusive. Here, we demonstrate that SET7/9-mediated methylation on 6 lysine residues modulated JMJD2A. Joint mutation of these lysine residues suppressed JMJD2A's ability to stimulate the MMP1 matrix metallopeptidase promoter upon recruitment by the ETV1 transcription factor.

View Article and Find Full Text PDF

Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is one of the etiologies that contribute to hepatocellular carcinoma (HCC), and chronic inflammation is one of the proposed mediators of HCC. Because necroptosis is a cell death pathway that induces inflammation, we tested whether necroptosis-induced inflammation contributes to the progression of NAFLD to HCC in a mouse model of diet-induced HCC. Male and female wild-type (WT) mice and mouse models where necroptosis is blocked (Ripk3-/- or Mlkl-/- mice) were fed either a control diet, choline-deficient low-fat diet or choline-deficient high-fat diet.

View Article and Find Full Text PDF

The overall goal of the annual Transdisciplinary Research in Energetics and Cancer (TREC) Training Workshop is to provide transdisciplinary training for scientists in energetics and cancer and clinical care. The 2022 Workshop included 27 early-to-mid career investigators (trainees) pursuing diverse TREC research areas in basic, clinical, and population sciences. The 2022 trainees participated in a gallery walk, an interactive qualitative program evaluation method, to summarize key takeaways related to program objectives.

View Article and Find Full Text PDF

BHLHE40 is a transcription factor, whose role in colorectal cancer has remained elusive. We demonstrate that the gene is upregulated in colorectal tumors. Transcription of was jointly stimulated by the DNA-binding ETV1 protein and two associated histone demethylases, JMJD1A/KDM3A and JMJD2A/KDM4A, which were shown to also form complexes on their own and whose enzymatic activity was required for upregulation.

View Article and Find Full Text PDF

The transcription factor ETS variant 1 (ETV1) is capable of promoting prostate tumorigenesis. We demonstrate that ETV1 can be posttranslationally modified by covalent attachment of small ubiquitin-like modifier 1 (SUMO1) onto four different lysine residues. In human embryonic kidney 293T cells, mutation of these sumoylation sites stimulated the transactivation potential of ETV1 at the matrix metalloproteinase 1 (MMP1), but not Yes-associated protein 1 gene promoter, while ETV1 protein stability and intracellular localization remained unchanged.

View Article and Find Full Text PDF

ETS variant 1 (ETV1) is an oncogenic transcription factor. However, its role in colorectal cancer has remained understudied. The present study demonstrated that ETV1 downregulation led to reduced HCT116 colorectal cancer cell growth and clonogenic activity.

View Article and Find Full Text PDF

More than 30% of genes in higher eukaryotes are regulated by RNA polymerase II (Pol II) promoter proximal pausing. Pausing is released by the positive transcription elongation factor complex (P-TEFb). However, the exact mechanism by which this occurs and whether phosphorylation of the carboxyl-terminal domain of Pol II is involved in the process remains unknown.

View Article and Find Full Text PDF

MyoD family inhibitor (MDFI) and MDFI domain-containing (MDFIC) are homologous proteins known to regulate myogenic transcription factors. Hitherto, their role in cancer is unknown. We discovered that MDFI is up- and MDFIC downregulated in colorectal tumors.

View Article and Find Full Text PDF

Tumor suppressor ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, regulates cell cycle progression, interacts with the tumor suppressor TP53, and prevents genomic instability. In addition, ARID1A has been shown to foster resistance to cancer therapy. By promoting non-homologous end joining (NHEJ), ARID1A enhances DNA repair.

View Article and Find Full Text PDF

The ETS transcription factor ETV1 is frequently overexpressed in aggressive prostate cancer, which is one underlying cause of this disease. Accordingly, transgenic mice that prostate-specifically overexpress ETV1 develop prostatic intraepithelial neoplasia. However, progression to the adenocarcinoma stage is stifled in these mice, suggesting that inhibitory pathways possibly preclude ETV1 from exerting its full oncogenic potential.

View Article and Find Full Text PDF

Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility.

View Article and Find Full Text PDF

The circadian oscillator is a molecular feedback circuit whose orchestration involves posttranslational control of the activity and protein levels of its components. Although controlled proteolysis of circadian proteins is critical for oscillator function, our understanding of the underlying mechanisms remains incomplete. Here, we report that JmjC domain-containing protein 5 (JMJD5) interacts with CRYPTOCHROME 1 (CRY1) in an F-box/leucine-rich repeat protein 3 (FBXL3)-dependent manner and facilitates targeting of CRY1 to the proteasome.

View Article and Find Full Text PDF

Jumonji C domain-containing 1A (JMJD1A) is a histone demethylase and epigenetic regulator that has been implicated in cancer development. In the current study, its mRNA and protein expression was analyzed in human colorectal tumors. It was demonstrated that JMJD1A levels were increased and correlated with a more aggressive phenotype.

View Article and Find Full Text PDF

Two of the unsolved, important questions about epigenetics are: do histone arginine demethylases exist, and is the removal of histone tails by proteolysis a major epigenetic modification process? Here, we report that two orphan Jumonji C domain (JmjC)-containing proteins, JMJD5 and JMJD7, have divalent cation-dependent protease activities that preferentially cleave the tails of histones 2, 3, or 4 containing methylated arginines. After the initial specific cleavage, JMJD5 and JMJD7, acting as aminopeptidases, progressively digest the C-terminal products. JMJD5-deficient fibroblasts exhibit dramatically increased levels of methylated arginines and histones.

View Article and Find Full Text PDF

Histone demethylase upregulation has been observed in human cancers, yet it is unknown whether this is a bystander event or a driver of tumorigenesis. We found that overexpression of lysine-specific demethylase 4A (KDM4A, also known as JMJD2A) was positively correlated with Gleason score and metastasis in human prostate tumors. Overexpression of JMJD2A resulted in the development of prostatic intraepithelial neoplasia in mice, demonstrating that JMJD2A can initiate prostate cancer development.

View Article and Find Full Text PDF

PSMD10, also known as gankyrin, is associated with the proteasome and has been shown to be an oncoprotein in the liver. Here, we report that PSMD10 expression is stimulated by the histone demethylase JMJD2A/KDM4A and its interaction partner, the ETV1 transcription factor, in LNCaP prostate cancer cells. Global analysis of expression patterns revealed that PSMD10 mRNA levels are positively correlated with those of both JMJD2A and ETV1.

View Article and Find Full Text PDF

The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway.

View Article and Find Full Text PDF

Overexpression of the ETS-related transcription factor ETV1 can initiate neoplastic transformation of the prostate. ETV1 activity is highly regulated by phosphorylation, but the underlying mechanisms are unknown. Here we report that all 14-3-3 proteins, with the exception of the tumor suppressor 14-3-3σ, can bind to ETV1 in a condition manner dictated by its prominent phosphorylation site S216.

View Article and Find Full Text PDF

Prostate cancer is characterized by the recurrent translocation of ETS transcription factors, including ETS variant 1 (ETV1) [also known as ETS-related 81 (ER81)]. Transgenic ETV1 mice develop prostatic intraepithelial neoplasia, yet the mechanisms by which ETV1 exerts its deleterious function remain largely unexplored. In this study, we demonstrated that ETV1 is capable of binding to the matrix metalloproteinase-7 (MMP-7) gene promoter both in vitro and in vivo.

View Article and Find Full Text PDF

JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro.

View Article and Find Full Text PDF

The homologous ETV1, ETV4 and ETV5 proteins form the PEA3 subfamily of ETS transcription factors. In Ewing tumors, chromosomal translocations affecting ETV1 or ETV4 are an underlying cause of carcinogenesis. Likewise, chromosomal rearrangements of the ETV1, ETV4 or ETV5 gene occur in prostate tumors and are thought to be one of the major driving forces in the genesis of prostate cancer.

View Article and Find Full Text PDF

Histone lysine methylation is pivotal in regulating chromatin structure and thus profoundly affects the transcriptome. JMJD5 (jumonji C domain-containing 5) is a histone demethylase that specifically removes methyl moieties from dimethylated lysine 36 on histone H3 and exerts a pro-proliferative effect on breast cancer cells. Here, we generated JMJD5 knockout mice in order to study the physiological significance of this enzyme.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0scslhrnfqfgtubkus5vjpcqqcddlrl0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once